GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (3)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Angewandte Chemie International Edition Vol. 61, No. 29 ( 2022-07-18)
    In: Angewandte Chemie International Edition, Wiley, Vol. 61, No. 29 ( 2022-07-18)
    Abstract: Zeolites with a few unit cells are promising as catalyst and adsorbents. The quest to synthesize the smallest zeolites has recently resulted in 4 to 8 nm nanozeolites, about 2 to 4 unit cells. These findings pose the question of what is the smallest zeolite that could be obtained by hydrothermal synthesis. Here we address this question using molecular simulations and thermodynamic analysis. The simulations predict that amorphous precursors as small as 4 nm can crystallize zeolites, in agreement with the experiments. We find that interfacial forces dominate the structure of smaller particles, resulting in size‐dependent compact isomers that have ring and pore distributions different from open framework zeolites. The instability of zeolites smaller than 3±0.5 nm precludes a classical mechanism of nucleation from solution or through assembly of small nanoslabs.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Angewandte Chemie Vol. 134, No. 29 ( 2022-07-18)
    In: Angewandte Chemie, Wiley, Vol. 134, No. 29 ( 2022-07-18)
    Abstract: Zeolites with a few unit cells are promising as catalyst and adsorbents. The quest to synthesize the smallest zeolites has recently resulted in 4 to 8 nm nanozeolites, about 2 to 4 unit cells. These findings pose the question of what is the smallest zeolite that could be obtained by hydrothermal synthesis. Here we address this question using molecular simulations and thermodynamic analysis. The simulations predict that amorphous precursors as small as 4 nm can crystallize zeolites, in agreement with the experiments. We find that interfacial forces dominate the structure of smaller particles, resulting in size‐dependent compact isomers that have ring and pore distributions different from open framework zeolites. The instability of zeolites smaller than 3±0.5 nm precludes a classical mechanism of nucleation from solution or through assembly of small nanoslabs.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Journal of Computational Chemistry Vol. 38, No. 16 ( 2017-06-15), p. 1353-1361
    In: Journal of Computational Chemistry, Wiley, Vol. 38, No. 16 ( 2017-06-15), p. 1353-1361
    Abstract: The conformational states adopted by a polymer chain in water are a result of a delicate balance between intra‐molecular and water‐mediated interactions. Using an explicit representation of the solvent is, however, computationally expensive and it is often necessary to turn to implicit representations. We present a systematic derivation of implicit models of water and study the effect of simplifying the representation of the solvent on the conformations of hydrophobic homopolymers of varying length. Starting from the explicit coarse‐grained single site mW water model, we develop an implicit solvent model that reproduces the free energy of the contact pair between two hydrophobic monomers, an implicit solvent model that captures the free energy of contact pair minima, desolvation barrier, and solvent‐separated minima, and finally, we consider vacuum simulations. We generate potentials of mean force for polymers of various lengths in explicit water, the implicit solvents and vacuum, using umbrella sampling and replica exchange molecular dynamics simulations. Surprisingly, vacuum simulations outperform the implicit solvent simulations, with the implicit model involving a desolvation barrier producing spurious extended polymer conformations. © 2017 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0192-8651 , 1096-987X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1479181-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...