GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecology Letters, Wiley, Vol. 22, No. 5 ( 2019-05), p. 855-865
    Abstract: Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait‐based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes. We demonstrate the power of such approaches by presenting a novel analysis of long‐term responses of different tropical forest to climatic changes along a rainfall gradient. We explore how key ecosystem's biogeochemical properties have shifted over time as a consequence of multi‐decadal drying. Notably, we find that drier tropical forests have increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biotropica, Wiley, Vol. 51, No. 3 ( 2019-05), p. 319-329
    Abstract: Les prédictions estiment une potentielle quadruplication de la population sur le continent africain au cours du siècle prochain. La déforestation et la transition de forêts primaires vers des forêts secondaires qui en résulte ont un fort impact sur le cycle mondial du carbone ainsi que sur la conservation de la biodiversité. Par conséquence, il est impératif de mieux comprendre comment les stocks de carbone et l'assemblage de la flore se reconstituent pendant la régénération de forêts secondaires. Pour cela, nous avons inventorié une chronoséquence de régénération forestière de 15 parcelles de 1 ha dans la forêt tropicale du bassin du Congo et évalué les changements dans les stocks de carbone ainsi que la diversité des espèces d'arbres et la composition de leurs traits fonctionnels. Nous avions pour objectif de suivre les trajectoires de rétablissement des espèces ainsi que des stocks de carbone dans les forêts secondaires, ceci en comparant des forêts secondaires de 5 à 200 ans avec une forêt primaire de référence. À travers les différents gradients de succession, la composition fonctionnelle montre une trajectoire allant de l'acquisition des ressources à la conservation des ressources, à l'exception des trait fonctionnels liés à l'azote. Malgré un rétablissement initial rapide de la diversité des espèces et de la composition fonctionnelle, il subsistait d'importantes différences de structure et de stocks de carbone entre les forêts secondaires et les forêts primaires, ce qui suggère qu'un rétablissement complet des forêts secondaires pourrait prendre beaucoup plus de temps qu'estimé jusqu’à présent. En tant que tels, les stocks de carbone hors sol des forêts secondaires de 200 ans ne représentaient que 57% de ceux de la forêt vierge de référence, ce qui suggère un rétablissement lent des stocks de carbone en surface, bien que des recherches supplémentaires soient désirables pour confirmer cette observation. Les résultats de cette étude soulignent la nécessité de mener des études plus approfondies sur le rétablissement des forêts en Afrique centrale, afin de mieux comprendre les processus qui contrôlent la biodiversité et le rétablissement des stocks de carbone dans ces forêts tropicales sous‐étudiées.
    Type of Medium: Online Resource
    ISSN: 0006-3606 , 1744-7429
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2052061-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 30, No. 1 ( 2024-01)
    Abstract: A large share of the global forest restoration potential is situated in artificial ‘unstable’ mesic African savannas, which could be restored to higher carbon and biodiversity states if protected from human‐induced burning. However, uncertainty on recovery rates in protected unstable savannas impedes science‐informed forest restoration initiatives. Here, we quantify the forest restoration success of anthropogenic fire exclusion within an 88‐ha mesic artificial savanna patch in the Kongo Central province of the Democratic Republic of the Congo (DR Congo). We found that aboveground carbon recovery after 17 years was on average 11.40 ± 0.85 Mg C ha −1 . Using a statistical model, we found that aboveground carbon stocks take 112 ± 3 years to recover to 90% of aboveground carbon stocks in old‐growth forests. Assuming that this recovery trajectory would be representative for all unstable savannas, we estimate that they could have a total carbon uptake potential of 12.13 ± 2.25 Gt C by 2100 across DR Congo, Congo and Angola. Species richness recovered to 33.17% after 17 years, and we predicted a 90% recovery at 54 ± 2 years. In contrast, we predicted that species composition would recover to 90% of old‐growth forest composition only after 124 ± 3 years. We conclude that the relatively simple and cost‐efficient measure of fire exclusion in artificial savannas is an effective nature‐based solution to climate change and biodiversity loss. However, more long‐term and in situ monitoring efforts are needed to quantify variation in long‐term carbon and diversity recovery pathways. Particular uncertainties are spatial variability in socio‐economics and growing conditions as well as the effects of projected climate change.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Global Ecology and Biogeography, Wiley, Vol. 27, No. 11 ( 2018-11), p. 1366-1383
    Abstract: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees. Location Pan‐tropical. Time period Early 21st century. Major taxa studied Woody plants. Methods Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the i th largest trees. Results Measuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents. Main conclusions Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 9 ( 2020-09), p. 1495-1514
    Abstract: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in 〉 80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Ecology and Evolution, Wiley, Vol. 11, No. 24 ( 2021-12), p. 18691-18707
    Abstract: Most Central African rainforests are characterized by a remarkable abundance of light‐demanding canopy species: long‐lived pioneers (LLP) and non‐pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash‐and‐burn farming activities, which abruptly ended in the 19th century. This “human disturbance” hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one‐ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short‐lived pioneers (SLP) and a single abundant shade‐tolerant species ( Gilbertiodendron dewevrei ) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses ( G. dewevrei ). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one‐time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the “human disturbance” hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long‐term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei , which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present‐day forest composition is a result of adaptation to late‐Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Methods in Ecology and Evolution, Wiley, Vol. 9, No. 5 ( 2018-05), p. 1179-1189
    Abstract: Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site‐to‐site variation in height–diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan‐tropical or regional allometric equations to estimate height. Using a pan‐tropical dataset of 73 plots where at least 150 trees had in‐field ground‐based height measurements, we examined how the number of trees sampled affects the performance of locally derived height–diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement. Using cross‐validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate‐based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand‐level biomass produced using local allometries to estimate tree height show no over‐ or under‐estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height–diameter models with low height prediction error) entirely random or diameter size‐class stratified approaches. Our results indicate that even limited sampling of heights can be used to refine height–diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.
    Type of Medium: Online Resource
    ISSN: 2041-210X , 2041-210X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2528492-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Global Change Biology Vol. 21, No. 6 ( 2015-06), p. 2296-2308
    In: Global Change Biology, Wiley, Vol. 21, No. 6 ( 2015-06), p. 2296-2308
    Abstract: The impact of Holocene drought events on the presumably stable Central African rainforest remains largely unexplored, in particular the significance of fire. High‐quality sedimentary archives are scarce, and palynological records mostly integrate over large regional scales subject to different fire regimes. Here, we demonstrate a direct temporal link between Holocene droughts, palaeofire and vegetation change within present‐day Central African rainforest, using records of identified charcoal fragments extracted from soil in the southern Mayumbe forest (Democratic Republic of Congo). We find three distinct periods of local palaeofire occurrence: 7.8–6.8 ka BP , 2.3–1.5 ka BP , 0.8 ka BP – present. These periods are linked to well‐known Holocene drought anomalies: the 8.2 ka BP event, the 3rd millennium BP rainforest crisis and the Mediaeval Climate Anomaly. During and after these Holocene droughts, the Central African rainforest landscape was characterized by a fragmented pattern with fire‐prone open patches. Some fires occurred during the drought anomalies although most fires seem to lag behind them, which suggests that the open patches remained fire‐prone after the actual climate anomalies. Charcoal identifications indicate that mature rainforest patches did persist through the Early to Mid‐Holocene climatic transition, the subsequent Holocene thermal optimum and the third millennium BP rainforest crisis, until 0.8 ka BP . However, disturbance and fragmentation were probably more prominent near the boundary of the southern Mayumbe forest. Furthermore, the dominance of pioneer and woodland savanna taxa in younger charcoal assemblages indicates that rainforest regeneration was hampered by increasingly severe drought conditions after 0.8 ka BP . These results support the notion of a dynamic forest ecosystem at multicentury time scales across the Central African rainforest.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Global Change Biology, Wiley, Vol. 25, No. 1 ( 2019-01), p. 39-56
    Abstract: Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate‐induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long‐term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water‐deficit affiliation and wood density. Tree communities have become increasingly dominated by large‐statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry‐affiliated genera have become more abundant, while the mortality of wet‐affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry‐affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate‐change drivers, but yet to significantly impact whole‐community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large‐statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 9 ( 2021-09), p. 1740-1764
    Abstract: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co‐occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open‐access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local‐to‐regional datasets to openly release data. We thus present sPlotOpen, the largest open‐access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots ( n  = 95,104) recording cover or abundance of naturally co‐occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets ( c . 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot‐level data also include community‐weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot‐level records. Software format Three main matrices (.csv), relationally linked.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...