GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Restoration Ecology, Wiley, Vol. 22, No. 1 ( 2014-01), p. 1-4
    Abstract: Relating restoration ecology to policy is one of the aims of the Society for Ecological Restoration and its journal Restoration Ecology . As an interdisciplinary team of researchers in both ecological science and political science, we have struggled with how policy‐relevant language is and could be deployed in restoration ecology. Using language in scientific publications that resonates with overarching policy questions may facilitate linkages between researcher investigations and decision‐makers' concerns on all levels. Climate change is the most important environmental problem of our time and to provide policymakers with new relevant knowledge on this problem is of outmost importance. To determine whether or not policy‐specific language was being included in restoration ecology science, we surveyed the field of restoration ecology from 2008 to 2010, identifying 1,029 articles, which we further examined for the inclusion of climate change as a key element of the research. We found that of the 58 articles with “climate change” or “global warming” in the abstract, only 3 identified specific policies relevant to the research results. We believe that restoration ecologists are failing to include themselves in policy formation and implementation of issues such as climate change within journals focused on restoration ecology. We suggest that more explicit reference to policies and terminology recognizable to policymakers might enhance the impact of restoration ecology on decision‐making processes.
    Type of Medium: Online Resource
    ISSN: 1061-2971 , 1526-100X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020952-6
    detail.hit.zdb_id: 914746-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Hydrological Processes, Wiley, Vol. 35, No. 4 ( 2021-04)
    Abstract: Improving our ability to detect changes in terrestrial and aquatic systems is a grand challenge in the environmental sciences. In a world experiencing increasingly rapid rates of climate change and ecosystem transformation, our ability to understand and predict how, when, where, and why changes occur is essential for adapting and mitigating human behaviours. In this context, long‐term field research infrastructures have a fundamentally important role to play. For northern boreal landscapes, the Krycklan Catchment Study (KCS) has supported monitoring and research aimed at revealing these changes since it was initiated in 1980. Early studies focused on forest regeneration and microclimatic conditions, nutrient balances and forest hydrology, which included monitoring climate variables, water balance components, and stream water chemistry. The research infrastructure has expanded over the years to encompass a 6790 ha catchment, which currently includes 11 gauged streams, ca. 1000 soil lysimeters, 150 groundwater wells, 〉 500 permanent forest inventory plots, and a 150 m tall tower (a combined ecosystem‐atmosphere station of the ICOS, Integrated Carbon Observation System) for measurements of atmospheric gas concentrations and biosphere‐atmosphere exchanges of carbon, water, and energy. In addition, the KCS has also been the focus of numerous high resolution multi‐spectral LiDAR measurements and large scale experiments. This large collection of equipment and data generation supports a range of disciplinary studies, but more importantly fosters multi‐, trans‐, and interdisciplinary research opportunities. The KCS attracts a broad collection of scientists, including biogeochemists, ecologists, foresters, geologists, hydrologists, limnologists, soil scientists, and social scientists, all of whom bring their knowledge and experience to the site. The combination of long‐term monitoring, shorter‐term research projects, and large‐scale experiments, including manipulations of climate and various forest management practices, has contributed much to our understanding of boreal landscape functioning, while also supporting the development of models and guidelines for research, policy, and management.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Hydrological Processes, Wiley, Vol. 36, No. 10 ( 2022-10)
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecohydrology, Wiley, Vol. 8, No. 5 ( 2015-07), p. 753-764
    Abstract: We reviewed follow‐up studies from Finnish and Swedish streams that have been restored after timber floating to assess the abiotic and biotic responses to restoration. More specifically, from a review of 18 case studies (16 published and 2 unpublished), we determined whether different taxonomic groups react differently or require different periods of time to respond to the same type of restoration. Restoration entailed returning coarse sediment (cobbles and boulders) and sometimes large wood to previously channelized turbulent reaches, primarily with the objective of meeting habitat requirements of naturally reproducing salmonid fish. The restored streams showed a consistent increase in channel complexity and retention capacity, but the biotic responses were weak or absent in most species groups. Aquatic mosses growing on boulders were drastically reduced shortly after restoration, but in most studies, they recovered after a few years. Riparian plants, macroinvertebrates and fish did not show any consistent trends in response. We discuss seven alternative explanations to these inconsistent results and conclude that two decades is probably too short a time for most organisms to recover. We recommend long‐term monitoring using standardized methods, a landscape‐scale perspective and a wider range of organisms to improve the basis for judging to what extent restoration in boreal streams has achieved its goal of reducing the impacts from timber floating. Copyright © 2014 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1936-0584 , 1936-0592
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2418105-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...