GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Journal of Cellular Physiology Vol. 230, No. 12 ( 2015-12), p. 2875-2880
    In: Journal of Cellular Physiology, Wiley, Vol. 230, No. 12 ( 2015-12), p. 2875-2880
    Abstract: A universal signaling module has been described which utilizes the nuclear form of Fibroblast growth Factor Receptor 1 (FGFR1) in a central role directing the post‐mitotic development of neural cells through coordinated gene expression. In this review, we discuss in detail the current knowledge of FGFR1 nuclear interaction partners in three scenarios: (i) Engagement of FGFR1 in neuronal stem cells and regulation of neuronal differentiation; (ii) interaction with the orphan receptor Nurr1 in development of mesencephalic dopaminergic neurons; (iii) modulation of nuclear FGFR1 interactions downstream of nerve growth factor (NGF) signaling. These coalitions demonstrate the versatility of non‐canonical, nuclear tyrosine kinase signaling in diverse cellular differentiation programs of neurons. J. Cell. Physiol. 230: 2875–2880, 2015. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurochemistry, Wiley, Vol. 137, No. 5 ( 2016-06), p. 756-769
    Abstract: Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co‐receptor α‐Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF‐receptor (FGF‐R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF‐R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co‐application of soluble α‐Klotho leads to activation of the Akt‐pathway and modifies FGF23‐impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. image In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ‐activation. Co‐application of the co‐receptor α‐Klotho leads to an Akt‐activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.
    Type of Medium: Online Resource
    ISSN: 0022-3042 , 1471-4159
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2020528-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...