GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Angewandte Chemie, Wiley, Vol. 134, No. 35 ( 2022-08-26)
    Abstract: The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C 3 ‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10 −2  S cm −1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Small, Wiley, Vol. 18, No. 6 ( 2022-02)
    Abstract: The sluggish kinetics of sulfur conversion in the cathode and the nonuniform deposition of lithium metal at the anode result in severe capacity decay and poor cycle life for lithium–sulfur (Li–S) batteries. Resolving these deficiencies is the most direct route toward achieving practical cells of this chemistry. Herein, a vertically aligned wood–derived carbon plate decorated with Co 4 N nanoparticles host (Co 4 N/WCP) is proposed that can serve as a host for both the sulfur cathode and the metallic lithium anode. This Co 4 N/WCP electrode host drastically enhances the reaction kinetics in the sulfur cathode and homogenizes the electric field at the anode for the uniform lithium plating. Density functional theory calculations confirm the experimental observations that Co 4 N/WCP provides a lower energy barrier for the polysulfide redox reaction in the cathode and a low adsorption energy for lithium deposition at the anode. Employing the Co 4 N/WCP host at both electrodes in a S@Co 4 N/WCP||Li@Co 4 N/WCP full cell delivers a specific capacity of 807.9 mAh g −1 after 500 cycles at a 1 C rate. Additional experiments are performed with high areal sulfur loading of 4 mg cm −2 to demonstrate the viability of this strategy for producing practical Li–S cells.
    Type of Medium: Online Resource
    ISSN: 1613-6810 , 1613-6829
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2168935-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Angewandte Chemie, Wiley, Vol. 132, No. 40 ( 2020-09-28), p. 17641-17646
    Abstract: A group of newly reported antiperovskite nitrides Cu x In 1− x NNi 3 (0≤ x ≤1) with tunable composition are employed as electrocatalysts for the hydrogen evolution reaction (HER). Cu 0.4 In 0.6 NNi 3 shows the highest intrinsic performance among all developed catalysts with an overpotential of merely 42 mV at 10 mA cm geo −2 . Stability tests at a high current density of 100 mA cm geo −2 show its super‐stable performance with only 7 mV increase in overpotential after more than 60 hours of measurement, surpassing commercial Pt/C (increase of 170 mV). By partial substitution, the derived antiperovskite nitride achieves a smaller kinetic barrier of water dissociation compared to the unsubstituted InNNi 3 and CuNNi 3 , revealed by first‐principle calculations. It is found that the partially substituted Cu x In 1− x NNi 3 possesses a thermal neutral and desirable Gibbs free energy of hydrogen for HER, ascribed to the tailoring of the energy of d‐band center arose by the A‐site (A=Cu or In) substitution and a resulting optimization of adsorbate interactions.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Advanced Functional Materials, Wiley, Vol. 33, No. 18 ( 2023-05)
    Abstract: Assembling molecular proton carriers into crosslinked networks is widely used to fabricate proton conductors, but they often suffer losses in conduction efficiency and stability accompanied by unclear causes. Covalent organic frameworks (COFs), with well‐defined crystal frameworks and excellent stability, offer a platform for exploring the proton transfer process. Herein, a strategy to construct proton conductors that induce conductivity and stability by introducing bottom‐up hierarchical structure, mass transport interfaces, and host–guest interactions into the COFs is proposed. The proton‐transport platforms are designed to possess hierarchically macro–microporous structure for proton storage and mass transport. The protic ionic liquids, with low proton dissociation energies investigated by DFT calculation, are installed at open channel walls for faster proton motion. As expected, the resultant proton conductors based on a covalent organic framework (PIL 0.5 @m‐TpPa‐SO 3 H) with hierarchical pores increase conductivity by approximately three orders of magnitude, achieving the value of 1.02 × 10 −1  S cm −1 (90 °C, 100% RH), and maintain excellent stability. In addition, molecular dynamics simulations reveal the mechanism of “hydrogen‐bond network” for proton conduction. This work offers a fresh perspective on COF‐based material manufacturing for high‐performance proton conductors via a protocol of macro‐micropores.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Angewandte Chemie International Edition Vol. 59, No. 40 ( 2020-09-28), p. 17488-17493
    In: Angewandte Chemie International Edition, Wiley, Vol. 59, No. 40 ( 2020-09-28), p. 17488-17493
    Abstract: A group of newly reported antiperovskite nitrides Cu x In 1− x NNi 3 (0≤ x ≤1) with tunable composition are employed as electrocatalysts for the hydrogen evolution reaction (HER). Cu 0.4 In 0.6 NNi 3 shows the highest intrinsic performance among all developed catalysts with an overpotential of merely 42 mV at 10 mA cm geo −2 . Stability tests at a high current density of 100 mA cm geo −2 show its super‐stable performance with only 7 mV increase in overpotential after more than 60 hours of measurement, surpassing commercial Pt/C (increase of 170 mV). By partial substitution, the derived antiperovskite nitride achieves a smaller kinetic barrier of water dissociation compared to the unsubstituted InNNi 3 and CuNNi 3 , revealed by first‐principle calculations. It is found that the partially substituted Cu x In 1− x NNi 3 possesses a thermal neutral and desirable Gibbs free energy of hydrogen for HER, ascribed to the tailoring of the energy of d‐band center arose by the A‐site (A=Cu or In) substitution and a resulting optimization of adsorbate interactions.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Angewandte Chemie International Edition, Wiley, Vol. 61, No. 35 ( 2022-08-26)
    Abstract: The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C 3 ‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10 −2  S cm −1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Polymer Science, Wiley
    Abstract: Smart gene delivery vectors are gaining increasing attention in gene therapy, owing to their low cytotoxicity and intrinsic responsiveness. Our previously fabricated novel cationic brush polymer, comprising CSe bonds and tertiary amine EGIn‐ g ‐PDMAEMA, shows potential for gene transfection. In this study, its high efficiency for siRNA/pDNA transfection and low cytotoxicity in reactive oxygen species (ROS)‐rich microenvironments is substantiated in vitro. Its superior binding capacity with siRNA/pDNA is confirmed by agarose gel electrophoresis assay. The threshold weight ratios for siRNA/pDNA migration delay are 15 and 3 (polymer‐to‐nucleic acid, w/w), respectively. Fluorescence microscopy and ribonucleotide reductase regulatory subunit M2 gene silencing essay verify the biodegradability and responsive control release of nucleic acids under hydrogen peroxide stimulation in Huh‐7 cells. Compared with the gold standard, polyethylenimine 25 kDa, the target polymer displays superior transfection efficiency in ROS‐rich tumor cells under serum‐free conditions. Furthermore, the vector–nucleic acid complexes exhibit over 90% cell viability at a high concentration of 12 μg mL −1 and good colloidal stability in phosphate‐buffered saline (PBS) and 10% fetal bovine serum‐PBS for 24 h. The efficient control release and expression of nucleic acids in ROS environments and reduced cytotoxicity highlight the superiority of EGIn‐ g ‐PDMAEMA as a gene delivery platform for tumor gene therapy.
    Type of Medium: Online Resource
    ISSN: 0021-8995 , 1097-4628
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 1491105-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...