GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: NMR in Biomedicine, Wiley, Vol. 36, No. 4 ( 2023-04)
    Abstract: There are about 1500 genetic metabolic diseases. A small number of treatable diseases are diagnosed by newborn screening programs, which are continually being developed. However, most diseases can only be diagnosed based on clinical symptoms or metabolic findings. The main biological fluids used are urine, plasma and, in special situations, cerebrospinal fluid. In contrast to commonly used methods such as gas chromatography and high performance liquid chromatography mass spectrometry, ex vivo proton spectroscopy ( 1 H‐NMR) is not yet used in routine clinical practice, although it has been recommended for more than 30 years. Automatic analysis and improved NMR technology have also expanded the applications used for the diagnosis of inborn errors of metabolism. We provide a mini‐overview of typical applications, especially in urine but also in plasma, used to diagnose common but also rare genetic metabolic diseases with 1 H‐NMR. The use of computer‐assisted diagnostic suggestions can facilitate interpretation of the profiles. In a proof of principle, to date, 182 reports of 59 different diseases and 500 reports of healthy children are stored. The percentage of correct automatic diagnoses was 74%. Using the same 1 H‐NMR profile‐targeted analysis, it is possible to apply an untargeted approach that distinguishes profile differences from healthy individuals. Thus, additional conditions such as lysosomal storage diseases or drug interferences are detectable. Furthermore, because 1 H‐NMR is highly reproducible and can detect a variety of different substance categories, the metabolomic approach is suitable for monitoring patient treatment and revealing additional factors such as nutrition and microbiome metabolism. Besides the progress in analytical techniques, a multiomics approach is most effective to combine metabolomics with, for example, whole exome sequencing, to also diagnose patients with nondetectable metabolic abnormalities in biological fluids. In this mini review we also provide our own data to demonstrate the role of NMR in a multiomics platform in the field of inborn errors of metabolism.
    Type of Medium: Online Resource
    ISSN: 0952-3480 , 1099-1492
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2002003-X
    detail.hit.zdb_id: 1000976-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: JIMD Reports, Wiley, Vol. 63, No. 2 ( 2022-03), p. 168-180
    Abstract: Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a deficiency of the arylsulfatase A (ARSA). ARSA deficiency leads to an accumulation of sulfatides primarily in the nervous system ultimately causing demyelination. With evolving therapeutic options, there is an increasing need for indicators to evaluate disease progression. Here, we report targeted metabolic urine profiling of 56 MLD patients including longitudinal sampling, using 1 H (proton) nuclear magnetic resonance (NMR) spectroscopy. 1 H‐NMR urine spectra of 119 MLD samples and 323 healthy controls were analyzed by an in vitro diagnostics research (IVDr) tool, covering up to 50 endogenous and 100 disease‐related metabolites on a 600‐MHz IVDr NMR spectrometer. Quantitative data reports were analyzed regarding age of onset, clinical course, and therapeutic intervention. The NMR data reveal metabolome changes consistent with a multiorgan affection in MLD patients in comparison to controls. In the MLD cohort, N‐acetylaspartate (NAA) excretion in urine is elevated. Early onset MLD forms show a different metabolic profile suggesting a metabolic shift toward ketogenesis in comparison to late onset MLD and controls. In samples of juvenile MLD patients who stabilize clinically after hematopoietic stem cell transplantation (HSCT), the macrophage activation marker neopterin is elevated. We were able to identify different metabolic patterns reflecting variable organ disturbances in MLD, including brain and energy metabolism and inflammatory processes. We suggest NAA in urine as a quantitative biomarker for neurodegeneration. Intriguingly, elevated neopterin after HSCT supports the hypothesis that competent donor macrophages are crucial for favorable outcome.
    Type of Medium: Online Resource
    ISSN: 2192-8312 , 2192-8312
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2672872-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...