GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (4)
Material
Publisher
  • Wiley  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Medical Physics Vol. 42, No. 12 ( 2015-12), p. 6912-6918
    In: Medical Physics, Wiley, Vol. 42, No. 12 ( 2015-12), p. 6912-6918
    Abstract: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment ( in vivo ) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma pass rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D 99 change 〈 7%]. Larger variations have even higher detectability. Displacements in the patient's position and random variations in MLC leaf positions were not readily detectable, AUC 〈 0.64. The D 99 of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC's, and changes in the patient habitus. Shifts in the patient's position which can introduce large changes in the target dose coverage were not readily detected.
    Type of Medium: Online Resource
    ISSN: 0094-2405 , 2473-4209
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1466421-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Medical Physics, Wiley, Vol. 41, No. 8Part2 ( 2014-08), p. 15-15
    Abstract: HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co‐planar arcs which creates setup issues due to the geometry of the Delta4, resulting in possible phantom gantry collisions for plans with non‐zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub‐fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning.
    Type of Medium: Online Resource
    ISSN: 0094-2405 , 2473-4209
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1466421-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Medical Physics Vol. 42, No. 6Part35 ( 2015-06), p. 3629-3629
    In: Medical Physics, Wiley, Vol. 42, No. 6Part35 ( 2015-06), p. 3629-3629
    Abstract: EPID dosimetry is an emerging method for treatment verification and QA. Given that the in‐vivo EPID technique is in clinical use at some centers, we investigate the sensitivity and specificity for detecting different classes of errors. We assess the impact of these errors using dose volume histogram endpoints. Though data exist for EPID dosimetry performed pre‐treatment, this is the first study quantifying its effectiveness when used during patient treatment (in‐vivo). Methods: We analyzed 17 patients; EPID images of the exit dose were acquired and used to reconstruct the planar dose at isocenter. This dose was compared to the TPS dose using a 3%/3mm gamma criteria. To simulate errors, modifications were made to treatment plans using four possible classes of error: 1) patient misalignment, 2) changes in patient body habitus, 3) machine output changes and 4) MLC misalignments. Each error was applied with varying magnitudes. To assess the detectability of the error, the area under a ROC curve (AUC) was analyzed. The AUC was compared to changes in D99 of the PTV introduced by the simulated error. Results: For systematic changes in the MLC leaves, changes in the machine output and patient habitus, the AUC varied from 0.78–0.97 scaling with the magnitude of the error. The optimal gamma threshold as determined by the ROC curve varied between 84–92%. There was little diagnostic power in detecting random MLC leaf errors and patient shifts (AUC 0.52–0.74). Some errors with weak detectability had large changes in D99. Conclusion: These data demonstrate the ability of EPID‐based in‐vivo dosimetry in detecting variations in patient habitus and errors related to machine parameters such as systematic MLC misalignments and machine output changes. There was no correlation found between the detectability of the error using the gamma pass rate, ROC analysis and the impact on the dose volume histogram. Funded by grant R18HS022244 from AHRQ
    Type of Medium: Online Resource
    ISSN: 0094-2405 , 2473-4209
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1466421-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Medical Physics, Wiley, Vol. 42, No. 9 ( 2015-09), p. 5363-5369
    Abstract: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software‐based system composed of rules‐based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in‐house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into different failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules‐based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID‐based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules‐based and Bayesian network plan checking.
    Type of Medium: Online Resource
    ISSN: 0094-2405 , 2473-4209
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1466421-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...