GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley  (3)
Materialart
Verlag/Herausgeber
  • Wiley  (3)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    Wiley ; 2015
    In:  Geophysical Prospecting Vol. 63, No. 6 ( 2015-11), p. 1334-1354
    In: Geophysical Prospecting, Wiley, Vol. 63, No. 6 ( 2015-11), p. 1334-1354
    Kurzfassung: The accurate estimation of sub‐seafloor resistivity features from marine controlled source electromagnetic data using inverse modelling is hindered due to the limitations of the inversion routines. The most commonly used one‐dimensional inversion techniques for resolving subsurface resistivity structures are gradient‐based methods, namely Occam and Marquardt. The first approach relies on the smoothness of the model and is recommended when there are no sharp resistivity boundaries. The Marquardt routine is relevant for many electromagnetic applications with sharp resistivity contrasts but subject to the appropriate choice of a starting model. In this paper, we explore the ability of different 1D inversion schemes to derive sub‐seafloor resistivity structures from time domain marine controlled source electromagnetic data measured along an 8‐km‐long profile in the German North Sea. Seismic reflection data reveal a dipping shallow amplitude anomaly that was the target of the controleld source electromagnetic survey. We tested four inversion schemes to find suitable starting models for the final Marquardt inversion. In this respect, as a first scenario, Occam inversion results are considered a starting model for the subsequent Marquardt inversion (Occam–Marquardt). As a second scenario, we employ a global method called Differential Evolution Adaptive Metropolis and sequentially incorporate it with Marquardt inversion. The third approach corresponds to Marquardt inversion introducing lateral constraints. Finally, we include the lateral constraints in Differential Evolution Adaptive Metropolis optimization, and the results are sequentially utilized by Marquardt inversion. Occam–Marquardt may provide accurate estimation of the subsurface features, but it is dependent on the appropriate conversion of different multi‐layered Occam model to an acceptable starting model for Marquardt inversion, which is not straightforward. Employing parameter spaces, the Differential Evolution Adaptive Metropolis approach can be pertinent to determine Marquardt a priori information; nevertheless, the uncertainties in Differential Evolution Adaptive Metropolis optimization will introduce some inaccuracies in Marquardt inversion results. Laterally constrained Marquardt may be promising to resolve sub‐seafloor features, but it is not stable if there are significant lateral changes of the sub‐seafloor structure due to the dependence of the method to the starting model. Including the lateral constraints in Differential Evolution Adaptive Metropolis approach allows for faster convergence of the routine with consistent results, furnishing more accurate estimation of a priori models for the subsequent Marquardt inversion.
    Materialart: Online-Ressource
    ISSN: 0016-8025 , 1365-2478
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2015
    ZDB Id: 2020311-1
    ZDB Id: 799178-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Wiley ; 2020
    In:  Geophysical Prospecting Vol. 68, No. 7 ( 2020-09), p. 2254-2270
    In: Geophysical Prospecting, Wiley, Vol. 68, No. 7 ( 2020-09), p. 2254-2270
    Kurzfassung: Electromagnetic loop systems rely on the use of non‐conductive materials near the sensor to minimize bias effects superimposed on measured data. For marine sensors, rigidity, compactness and ease of platform handling are essential. Thus, commonly a compromise between rigid, cost‐effective and non‐conductive materials (e.g. stainless steel versus fibreglass composites) needs to be found. For systems dedicated to controlled‐source electromagnetic measurements, a spatial separation between critical system components and sensors may be feasible, whereas compact multi‐sensor platforms, remotely operated vehicles and autonomous unmanned vehicles require the use of electrically conductive components near the sensor. While data analysis and geological interpretations benefit vastly from each added instrument and multidisciplinary approaches, this introduces a systematic and platform‐immanent bias in the measured electromagnetic data. In this scope, we present two comparable case studies targeting loop‐source electromagnetic applications in both time and frequency domains: the time‐domain system trades the compact design for a clear separation of 15 m between an upper fibreglass frame, holding most critical titanium system components, and a lower frame with its coil and receivers. In case of the frequency‐domain profiler, the compact and rigid design is achieved by a circular fibreglass platform, carrying the transmitting and receiving coils, as well as several titanium housings and instruments. In this study, we analyse and quantify the quasi‐static influence of conductive objects on time‐ and frequency‐domain coil systems by applying an analytically and experimentally verified 3D finite element model. Moreover, we present calibration and optimization procedures to minimize bias inherent in the measured data. The numerical experiments do not only show the significance of the bias on the inversion results, but also the efficiency of a system calibration against the analytically calculated response of a known environment. The remaining bias after calibration is a time/frequency‐dependent function of seafloor conductivity, which doubles the commonly estimated noise floor from 1% to 2%, decreasing the sensitivity and resolution of the devices. By optimizing size and position of critical conductive system components (e.g. titanium housings) and/or modifying the transmitter/receiver geometry, we significantly reduce the effect of this residual bias on the inversion results as demonstrated by 3D modelling. These procedures motivate the opportunity to design dedicated, compact, low‐bias platforms and provide a solution for autonomous and remotely steered designs by minimizing their effect on the sensitivity of the controlled‐source electromagnetic sensor.
    Materialart: Online-Ressource
    ISSN: 0016-8025 , 1365-2478
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2020
    ZDB Id: 2020311-1
    ZDB Id: 799178-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Geophysical Prospecting, Wiley, Vol. 63, No. 6 ( 2015-11), p. 1314-1333
    Kurzfassung: This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ∼1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ∼20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ∼1 Ωm with a minimum resistivity at ∼300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.
    Materialart: Online-Ressource
    ISSN: 0016-8025 , 1365-2478
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2015
    ZDB Id: 2020311-1
    ZDB Id: 799178-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...