GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-22
    Description: The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia, the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-27
    Description: A common elemental analyzer system connected to a temperature-controlled gas chromatography (GC) column and coupled to an isotope ratio mass spectrometer was improved to decrease the determination limit for a simultaneous stable isotope ratio measurement of nitrogen and carbon dioxide. The additional use of a special ashtray system to collect the combustion residuals permitted more time-efficient work. These modifications to the elemental analyzer allowed precise measurements to be made down to 1.5 µg nitrogen and 10 µg carbon for stable isotope analysis. Low system background values and an acceptable signal-to-noise ratio have made an additional blank correction for these low sample measurements unnecessary. We provide a precision of this stable isotope analysis for lowest amounts of 1.2–2 µg nitrogen with a standard deviation of ±0.496‰ (n = 27) and for 8.2–15 µg carbon with a standard deviation of ±0.257‰ (n = 31) across different sample runs under stipulated conditions. This application can be established in an automatic mode without cryofocusing procedures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (delta C-13) patterns of essential amino acids (EAAs), also termed delta(13)C(AA)fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of delta(13)C(AA)fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different delta(13)C(AA)fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region-specific delta(13)C(AA)fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than delta(13)C(AA)fingerprinting. We conclude that delta(13)C(AA)fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Mixotrophic organisms are increasingly recognized as important components of ecosystems, but the factors controlling their nutrition pathways (in particular their autotrophy-heterotrophy balance) are little known. Both autotrophy and heterotrophy are expected to respond to density-dependent mechanisms but not necessarily in the same direction and/or strength. We hypothesize that the autotrophy-heterotrophy balance of mixotrophic organisms might therefore be a function of population densities. To investigate this relationship, we sampled mixotrophic jellyfish holobionts (host, Mastigias papua etpisoni; symbiont, Cladocopium sp.) in a marine lake (Palau, Micronesia) on six occasions (from 2010 to 2018). Over this period, population densities varied similar to 100 fold. We characterized the nutrition of the holobionts using the delta C-13 and delta N-15 signatures as well as C:N ratios. delta C-13 values increased and delta N-15 values decreased with increasing population densities (respectively, R-2 = 0.86 and 0.70, P 〈 0.05). Although less distinct, C:N ratios increased with increasing population densities (R-2 = 0.59, 0.1 〉 P 〉 0.05). This indicates that the autotrophy-heterotrophy balance tends toward autotrophy when population densities increase. We propose that the availability of zooplanktonic prey is the main driver of this pattern. These results demonstrate that the autotrophy-heterotrophy balance of mixotrophic jellyfishes can be tightly regulated by density-dependent mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: A recent meta-analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton (Shurin et al. 2002, Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia-dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-10
    Description: 1. Negative effects of zooplankton on the availability of phosphorus (P) for phytoplankton as a result of the retention of nutrients in zooplankton biomass and the sedimentation of exoskeletal remains after moulting, have been recently proposed. 2. In a mesocosm study, the relative importance of these mechanisms was tested for the freshwater cladoceran Daphnia hyalina×galeata. A total of 13 mesocosm bags was suspended in a mesotrophic German lake during summer 2000 and fertilised with inorganic P in order to obtain a total nitrogen to total P ratio closer to the Redfield ratio. D. hyalina×galeata was then added at a logarithmically scaled density gradient of up to 40 ind. L−1. Zooplankton densities, dissolved inorganic, particulate organic (seston 〈100 μm), as well as total nutrient concentrations were monitored. Additionally, nutrient concentrations of sediment water removed from the bottom of the mesocosm bags via a manual pump were determined. 3. Seston carbon (C), seston P and total P were significantly negatively correlated with Daphnia densities. The amount of particulate P (∼5–6 μg P L−1) sequestered from the seston compartment by Daphnia corresponded roughly to the increase of zooplankton biomass (population growth). Soluble reactive phosphorous (SRP) was at all times high (∼25–35 μg P L−1) and possibly unavailable to phytoplankton as a result of P adsorption to calcite during a calcite precipitation event (whiting). P concentrations determined in sediment water were generally 〈60 μg P m−2 and thus never exceeded 1% of the total amount of P bound in particulate matter of the overlying water column. 4. Seston C : P ratios followed a polynomial second-order function: At Daphnia densities 〈40 ind. L−1 a positive linear relationship was evident, which is explained by the stronger reduction of P compared with C in seston, and transfer of seston P to zooplankton. Highest seston C : P ratios of ∼300 : 1 were observed at Daphnia densities of ∼30–50 ind. L−1, which is in agreement with proposed threshold values limiting Daphnia reproductive growth. At Daphnia densities 〉40–50 ind. L−1 C : P ratios were decreased because of the strong reduction of seston C at close to constantly low seston P-values of ∼3–4 μg P L−1. 5. At least for Daphnia, it may be concluded that – unlike population growth – the sedimentation of faecal pellets and carapaces after moulting seem negligible processes in pelagic phosphorus dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-15
    Description: Conventional simultaneous CNS stable isotope abundance measurements of solid samples usually require high sample amounts, up to 1 mg carbon, to achieve exact analytical results. This rarely used application is often impaired by high C:S element ratios when organic samples are analyzed and problems such as incomplete conversion into sulphur dioxide occur during analysis. We introduce, as a technical innovation, a high sensitivity elemental analyzer coupled to a conventional isotope ratio mass spectrometer, with which CNS-stable isotope ratios can be determined simultaneously in samples with low carbon content (〈40 mu g C corresponding to similar to 100 mu g dry weight). The system includes downsized reactors, a temperature program-controlled gas chromatography (GC) column and a cryogenic trap to collect small amounts of sulphur dioxide. This modified application allows for highly sensitive measurements in a fully automated operation with standard deviations better than +/-0.47 parts per thousand for delta N-15 and delta S-34 and +/-0.12 parts per thousand for delta C-13 (n=127). Samples collected from one sampling site in a Baltic fjord within a short time period were measured with the new system to get a first impression of triple stable isotope signatures. The results confirm the potential of using delta S-34 as a stable isotope tracer in combination with delta N-15 and delta C-13 measurements to improve discrimination of food sources in aquatic food webs. Copyright (C) 2009 John Wiley & Sons, Ltd
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning 〉 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth‐resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...