GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1)
  • Wiley-Blackwell  (1)
Document type
Years
  • 1
    Publication Date: 2012-07-11
    Description: This paper presents THEMIS measurements of two substorm events to show how the substorm current wedge (SCW) is generated. In the late growth phase when an earthward flow burst in the near-Earth magnetotail brakes and is diverted azimuthally, pressure gradients in the X- and Y-directions are observed to increase in the pileup and diverting regions of the flow. The enhanced pressure gradient in the Y-direction is dawnward (duskward) on the dawnside (duskside) where a clockwise (counter-clockwise) vortex forms. This dawn-dusk pressure gradient drives downward (upward) field-aligned current (FAC) on the dawnside (duskside) of the flow, which, when combined with the FACs generated by the clockwise (counter-clockwise) vortex, forms the SCW. Substorm auroral onset occurs when the vortices appear, Near-Earth dipolarization onset is observed by the THEMIS spacecraft (probes) when a rapid jump in the Y-component of pressure gradient is detected. The total FACs from the vortex and the azimuthal pressure gradient are found to be comparable to the DP-1 current in a typical substorm.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 (11). pp. 4885-4905.
    Publication Date: 2022-01-31
    Description: The presence of gas hydrates (GHs) increases the stiffness and strength of marine sediments. In elasto‐plastic constitutive models, it is common to consider GH saturation (Sh) as key internal variable for defining the contribution of GHs to composite soil mechanical behavior. However, the stress‐strain behavior of GH‐bearing sediments (GHBS) also depends on the microscale distribution of GH and on GH‐sediment fabrics. A thorough analysis of GHBS is difficult, because there is no unique relation between Sh and GH morphology. To improve the understanding of stress‐strain behavior of GHBS in terms of established soil models, this study summarizes results from triaxial compression tests with different Sh, pore fluids, effective confining stresses, and strain histories. Our data indicate that the mechanical behavior of GHBS strongly depends on Sh and GH morphology, and also on the strain‐induced alteration of GH‐sediment fabrics. Hardening‐softening characteristics of GHBS are strain rate‐dependent, which suggests that GH‐sediment fabrics dynamically rearrange during plastic yielding events. We hypothesize that rearrangement of GH‐sediment fabrics, through viscous deformation or transient dissociation and reformation of GHs, results in kinematic hardening, suppressed softening, and secondary strength recovery, which could potentially mitigate or counteract large‐strain failure events. For constitutive modeling approaches, we suggest that strain rate‐dependent micromechanical effects from alterations of the GH‐sediment fabrics can be lumped into a nonconstant residual friction parameter. We propose simple empirical evolution functions for the mechanical properties and calibrate the model parameters against the experimental data. Plain Language Summary Gas hydrates (GHs) are crystalline‐like solids, which are formed from natural gas molecules and water at high pressure and low temperature. GHs, and particularly methane hydrates, are naturally abundant in marine sediments. It is known that the presence of GH increases the mechanical stiffness and strength of sediments, and there is strong effort in analyzing and quantifying these effects in order to understand potential risks of sediment destabilization or slope failure. Based on our experimental results from high‐pressure geotechnical studies, we show that not only the initial amount and distribution of GH are important for the increased strength of GH‐bearing sediments but also the dynamic rearrangement of GH‐sediment fabrics during deformation characterizes the stress‐strain response and enables strength recovery after failure. We propose that different microstructural mechanisms contribute to this rearrangement and strength recovery of GH sediment. However, we consider these complicated processes in a simplified manner in an improved numerical model, which can be applied for geotechnical risk assessment on larger scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...