GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (2)
  • Wiley  (1)
Document type
Years
  • 1
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Harmful Algal Blooms: A Compendium Desk Reference, Wiley-Blackwell, 12 p., pp. 563-574, ISBN: 978-1-118-99465-8
    Publication Date: 2018-06-28
    Description: The genus Alexandrium (Halim) is perhaps the most intensively studied among toxic marine dinoflagellates. This is largely attributable to the devastating consequences of toxigenic blooms of this genus, with human poisonings from contaminated seafood, primarily from shellfish and more rarely from finfish; socio–economic losses to the aquaculture and fisheries industries; marine faunal mortalities; and food web disruptions common in coastal waters throughout the world. Members of this genus are globally distributed from the Arctic to the tropics, and in both hemispheres from sub–polar through temperate to sub–tropical to tropicalwaters. At least four distinct groups of marine phycotoxins are associated with various Alexandrium species, along with poorly characterized bioactive compounds (allelochemicals) that may affect species interactions among the plankton. According to the most recent iteration of the IOC–UNESCO reference list of toxic microalgae, there are now more than 30 recognized morphological species of Alexandrium, posing a daunting challenge for risk assessment and accurate identification in toxic phytoplankton monitoring programs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Blue Technologies: Production and Use of Marine Molecules, Wiley, 896 p., ISBN: ISBN: 978-3-527-3413
    Publication Date: 2018-02-28
    Description: Neurotoxins belonging to the group of saxitoxin (STX) and tetrodotoxin (TTX) analogs are guanidinium alkaloids that share a common high affinity and ion flux blockage capacity for voltage-gated sodium ion channels (Nav. Members of the STX group, also known as paralytic shellfish toxins (PST), are produced among three genera of marine dinoflagellate and several genera of phylogenetically distant and primarily freshwater filamentous cyanobacteria. The origin of the biosynthetic genes in dinoflagellates remains controversial and may represent single or multiple horizontal gene transfer (HGT) events from progenitor eubacteria and/or cyanobacteria. The TTXs occur primarily among marine puffer fish and a host of terrestrial amphibians. The biosynthetic pathway has not been completely elucidated and the origin of tetrodotoxicity,including the syndrome puffer fish poisoning (PFP) in human seafood consumers,remains somewhat enigmatic. Although symbiotic bacteria are most often invoked as the source of TTX in macrofauna, endogenous biosynthesis independent of bacteria cannot be excluded. Integration of knowledge on the biogenic origins, linked to heterogeneity of the biogeographical and phylogenetic distribution of these respective toxin groups, provides the basis for rational inferences and reasonable speculation about the functional role in aquatic and terrestrial ecosystems. Recent identification of the biosynthetic genes for STX analogs in both cyanobacteria and dinoflagellates has yielded insights into biosynthetic mechanisms of toxin heterogeneity among strains and the evolutionary origins of their respective elements of the toxin gene clusters. Although it is not fully understood how or why these molecules are produced in nature, development of improved detection methods will make possible the discovery of new sources and analogs. Once genetic mechanisms for toxin biosynthesis are fully incorporated with modeling of receptor binding interactions and the structural–functional affinities of the ion channels, this will facilitate further biotechnological exploitation of these exquisite bioactive compounds and point the way toward future development of pharmaceuticals and therapeutic applications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Harmful Algal Blooms: A Compendium Desk Reference, Wiley-Blackwell, 8 p., pp. 605-612, ISBN: 978-1-118-99465-8
    Publication Date: 2018-06-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...