GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 61, No. 11 ( 2023-10-26), p. 1902-1916
    Abstract: An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC MS/MS)-based candidate reference measurement procedure (RMP) for aldosterone quantification in human serum and plasma is presented. Methods The material used in this RMP was characterized by quantitative nuclear magnetic resonance (qNMR) to assure traceability to SI Units. For liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis a two-dimensional heart cut LC approach, in combination with an optimal supported liquid extraction protocol, was established for the accurate analysis of aldosterone in human serum and plasma in order to minimize matrix effects and avoid the co-elution of interferences. Assay validation was performed according to current guidelines. Selectivity and specificity were assessed using spiked serum; potential matrix effects were examined by a post column infusion experiment and the comparison of standard line slopes. An extensive protocol over 5 days was applied to determine precision, accuracy and trueness. Measurement uncertainty was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM), for which three individual sample preparations were performed on at least two different days. Results The RMP allowed aldosterone quantification within the range of 20–1,200 pg/mL without interference from structurally-related compounds and no evidence of matrix effects. Intermediate precision was ≤4.7% and repeatability was 2.8–3.7% for all analyte concentrations. The bias ranged between −2.2 and 0.5% for all levels and matrices. Total measurement uncertainties for target value assignment (n=6) were found to be ≤2.3%; expanded uncertainties were ≤4.6% (k=2) for all levels. Conclusions The RMP showed high analytical performance for aldosterone quantification in human serum and plasma. The traceability to SI units was established by qNMR content determination of aldosterone, which was utilized for direct calibration of the RMP. Thus, this candidate RMP is suitable for routine assay standardization and evaluation of clinical samples.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2021
    In:  Journal of Laboratory Medicine Vol. 45, No. 6 ( 2021-12-20), p. 311-317
    In: Journal of Laboratory Medicine, Walter de Gruyter GmbH, Vol. 45, No. 6 ( 2021-12-20), p. 311-317
    Abstract: Laboratory tests are essential to assess the health status and to guide patient care in individuals of all ages. The interpretation of quantitative test results requires availability of appropriate reference intervals, and reference intervals in children have to account for the extensive physiological dynamics with age in many biomarkers. Creation of reference intervals using conventional approaches requires the sampling of healthy individuals, which is opposed by ethical and practical considerations in children, due to the need for a large number of blood samples from healthy children of all ages, including neonates and young infants. This limits the availability and quality of pediatric reference intervals, and ultimately negatively impacts pediatric clinical decision-making. Data mining approaches use laboratory test results and clinical information from hospital information systems to create reference intervals. The extensive number of available test results from laboratory information systems and advanced statistical methods enable the creation of pediatric reference intervals with an unprecedented age-related accuracy for children of all ages. Ongoing developments regarding the availability and standardization of electronic medical records and of indirect statistical methods will further improve the benefit of data mining for pediatric reference intervals.
    Type of Medium: Online Resource
    ISSN: 2567-9449 , 2567-9430
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2909042-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 55, No. 1 ( 2017-1-1), p. 102-110
    Abstract: Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. Methods: We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC’s photometric method. Results: We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. Conclusions: The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 57, No. 10 ( 2019-09-25), p. 1595-1607
    Abstract: Interpreting hematology analytes in children is challenging due to the extensive changes in hematopoiesis that accompany physiological development and lead to pronounced sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, and limitations in current approaches to laboratory test result displays restrict their use when guiding clinical decisions. Methods We employed an improved data-driven approach to create percentile charts from laboratory data collected during patient care in 10 German centers (9,576,910 samples from 358,292 patients, 412,905–1,278,987 samples per analyte). We demonstrate visualization of hematology test results using percentile charts and z-scores (www.pedref.org/hematology) and assess the potential of percentiles and z-scores to support diagnosis of different hematological diseases. Results We created percentile charts for hemoglobin, hematocrit, red cell indices, red cell count, red cell distribution width, white cell count and platelet count in girls and boys from birth to 18 years of age. Comparison of pediatricians evaluating complex clinical scenarios using percentile charts versus conventional/tabular representations shows that percentile charts can enhance physician assessment in selected example cases. Age-specific percentiles and z-scores, compared with absolute test results, improve the identification of children with blood count abnormalities and the discrimination between different hematological diseases. Conclusions The provided reference intervals enable precise assessment of pediatric hematology test results. Representation of test results using percentiles and z-scores facilitates their interpretation and demonstrates the potential of digital approaches to improve clinical decision-making.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 60, No. 5 ( 2022-04-26), p. 726-739
    Abstract: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is recommended for measuring circulating steroids. However, assays display technical heterogeneity. So far, reproducibility of corticosteroid LC-MS/MS measurements has received scant attention. The aim of the study was to compare LC-MS/MS measurements of cortisol, 17OH-progesterone and aldosterone from nine European centers and assess performance according to external quality assessment (EQA) materials and calibration. Methods Seventy-eight patient samples, EQA materials and two commercial calibration sets were measured twice by laboratory-specific procedures. Results were obtained by in-house (CAL1) and external calibrations (CAL2 and CAL3). We evaluated intra and inter-laboratory imprecision, correlation and agreement in patient samples, and trueness, bias and commutability in EQA materials. Results Using CAL1, intra-laboratory CVs ranged between 2.8–7.4%, 4.4–18.0% and 5.2–22.2%, for cortisol, 17OH-progesterone and aldosterone, respectively. Trueness and bias in EQA materials were mostly acceptable, however, inappropriate commutability and target value assignment were highlighted in some cases. CAL2 showed suboptimal accuracy. Median inter-laboratory CVs for cortisol, 17OH-progesterone and aldosterone were 4.9, 11.8 and 13.8% with CAL1 and 3.6, 10.3 and 8.6% with CAL3 (all p 〈 0.001), respectively. Using CAL1, median bias vs. all laboratory-medians ranged from −6.6 to 6.9%, −17.2 to 7.8% and −12.0 to 16.8% for cortisol, 17OH-progesterone and aldosterone, respectively. Regression lines significantly deviated from the best fit for most laboratories. Using CAL3 improved cortisol and 17OH-progesterone between-method bias and correlation. Conclusions Intra-laboratory imprecision and performance with EQA materials were variable. Inter-laboratory performance was mostly within specifications. Although residual variability persists, adopting common traceable calibrators and RMP-determined EQA materials is beneficial for standardization of LC-MS/MS steroid measurements.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 60, No. 6 ( 2022-05-25), p. 941-951
    Abstract: The assessment of SARS-CoV-2 infections in children is still challenging, but essential for appropriate political decisions. The aim of this study was to investigate whether residual blood samples can be used for SARS-CoV-2 seroprevalence monitoring in pediatrics. Methods In this repeated cross-sectional cohort study, anonymous residual blood samples from pediatric patients aged 0–17 years were collected in three time-periods (Oct.–Nov. 2020, April 2021, and June–July 2021) and analyzed for SARS-CoV-2 Spike protein (anti-S) and nucleocapsid (anti-N) antibodies using commercial antibody assays. 28 reactive samples were used to compare antibody levels with a pseudotyped neutralization assay. The results were further compared to the official national COVID-19 surveillance data to calculate the number of unreported cases. Results In total, n=2,626 individual blood samples were analyzed. In this unvaccinated pediatric cohort anti-S and anti-N antibody seroprevalence increased over the three time periods (anti-S: 1.38–9.16%, and 14.59%; anti-N: 1.26%, to 6.19%, and 8.56%). Compared to the national surveillance data this leads to a 3.93–5.66-fold increase in the number of unreported cases. However, a correlation between the cumulative incidence of the individual provinces and our assigned data was found (r=0.74, p=0.0151). In addition, reactive samples with anti-S and anti-N and samples with only anti-S showed neutralization capabilities (11/14 and 8/14, respectively). Anti-S levels were not significantly different between age groups and sexes (all p 〉 0.05). Conclusions The present study suggests that residual blood samples from routine laboratory chemistry could be included in the estimation of the total SARS-CoV-2 seroprevalence in children.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 61, No. 1 ( 2023-01-27), p. 67-77
    Abstract: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) panels that include glucocorticoid-related steroids are increasingly used to characterize and diagnose adrenal cortical diseases. Limited information is currently available about reproducibility of these measurements among laboratories. The aim of the study was to compare LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone at eight European centers and assess the performance after unification of calibration. Methods Seventy-eight patient samples and commercial calibrators were measured twice by laboratory-specific procedures. Results were obtained according to in-house and external calibration. We evaluated intra-laboratory and inter-laboratory imprecision, regression and agreement against performance specifications derived from 11-deoxycortisol biological variation. Results Intra-laboratory CVs ranged between 3.3 and 7.7%, 3.3 and 11.8% and 2.7 and 12.8% for corticosterone, 11-deoxycortisol and cortisone, with 1, 4 and 3 laboratories often exceeding the maximum allowable imprecision (MAI), respectively. Median inter-laboratory CVs were 10.0, 10.7 and 6.2%, with 38.5, 50.7 and 2.6% cases exceeding the MAI for corticosterone, 11-deoxycortisol and cortisone, respectively. Median laboratory bias vs. all laboratory-medians ranged from −5.6 to 12.3% for corticosterone, −14.6 to 12.4% for 11-deoxycortisol and −4.0 to 6.5% for cortisone, with few cases exceeding the total allowable error. Modest deviations were found in regression equations among most laboratories. External calibration did not improve 11-deoxycortisol and worsened corticosterone and cortisone inter-laboratory comparability. Conclusions Method imprecision was variable. Inter-laboratory performance was reasonably good. However, cases with imprecision and total error above the acceptable limits were apparent for corticosterone and 11-deoxycortisol. Variability did not depend on calibration but apparently on imprecision, accuracy and specificity of individual methods. Tools for improving selectivity and accuracy are required to improve harmonization.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2013
    In:  Clinical Chemistry and Laboratory Medicine (CCLM) Vol. 51, No. 4 ( 2013-04-01), p. 863-872
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 51, No. 4 ( 2013-04-01), p. 863-872
    Abstract: Background: Determination of pediatric reference intervals (RIs) for laboratory quantities, including hematological quantities, is complex. The measured quantities vary by age, and obtaining samples from healthy children is difficult. Many widely used RIs are derived from small sample numbers and are split into arbitrary discrete age intervals. Use of intra-laboratory RIs specific to the examined population and analytical device used is not yet fully established. Indirect methods address these issues by deriving RIs from clinical laboratory databases which contain large datasets of both healthy and pathological samples. Methods: A refined indirect approach was used to create continuous age-dependent RIs for blood count quantities and sodium from birth to adulthood. The dataset for each quantity consisted of 60,000 individual samples from our clinical laboratory. Patient samples were separated according to age, and a density function of the proportion of healthy samples was estimated for each age group. The resulting RIs were merged to obtain continuous RIs from birth to adulthood. Results: The obtained RIs were compared to RIs generated by identical laboratory instruments, and to population-specific RIs created using conventional methods. This comparison showed a high concordance of reference limits and their age-dependent dynamics. Conclusions: The indirect approach reported here is well-suited to create continuous, intra-laboratory RIs from clinical laboratory databases and showed that the RIs generated are comparable to those created using established methods. The procedure can be transferred to other laboratory quantities and can be used as an alternative method for RI determination where conventional approaches are limited.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 59, No. 7 ( 2021-06-25), p. 1267-1278
    Abstract: Assessment of children’s laboratory test results requires consideration of the extensive changes that occur during physiological development and result in pronounced sex- and age-specific dynamics in many biochemical analytes. Pediatric reference intervals have to account for these dynamics, but ethical and practical challenges limit the availability of appropriate pediatric reference intervals that cover children from birth to adulthood. We have therefore initiated the multi-center data-driven PEDREF project (Next-Generation Pediatric Reference Intervals) to create pediatric reference intervals using data from laboratory information systems. Methods We analyzed laboratory test results from 638,683 patients (217,883–982,548 samples per analyte, a median of 603,745 test results per analyte, and 10,298,067 test results in total) performed during patient care in 13 German centers. Test results from children with repeat measurements were discarded, and we estimated the distribution of physiological test results using a validated statistical approach ( kosmic ). Results We report continuous pediatric reference intervals and percentile charts for alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, γ-glutamyl-transferase, total protein, albumin, creatinine, urea, sodium, potassium, calcium, chloride, anorganic phosphate, and magnesium. Reference intervals are provided as tables and fractional polynomial functions (i.e., mathematical equations) that can be integrated into laboratory information systems. Additionally, Z -scores and percentiles enable the normalization of test results by age and sex to facilitate their interpretation across age groups. Conclusions The provided reference intervals and percentile charts enable precise assessment of laboratory test results in children from birth to adulthood. Our findings highlight the pronounced dynamics in many biochemical analytes in neonates, which require particular consideration in reference intervals to support clinical decision making most effectively.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 57, No. 5 ( 2019-04-24), p. 730-739
    Abstract: Conventional establishment of reference intervals for hematological analytes is challenging due to the need to recruit healthy persons. Indirect methods address this by deriving reference intervals from clinical laboratory databases which contain large datasets of both physiological and pathological test results. Methods We used the “Reference Limit Estimator” (RLE) to establish reference intervals for common hematology analytes in adults aged 18–60 years. One hundred and ninety-five samples from 44,519 patients, measured on two different devices in a tertiary care center were analyzed. We examined the influence of patient cohorts with an increasing proportion of abnormal test results, compared sample selection strategies, explored inter-device differences, and analyzed the stability of reference intervals in simulated datasets with varying overlap of pathological and physiological test results. Results Reference intervals for hemoglobin, hematocrit, red cell count and platelet count remained stable, even if large numbers of pathological samples were included. Reference intervals for red cell indices, red cell distribution width and leukocyte count were sufficiently stable, if patient cohorts with the highest fraction of pathological samples were excluded. In simulated datasets, estimated reference limits shifted, if the pathological dataset contributed more than 15%–20% of total samples and approximated the physiological distribution. Advanced sample selection techniques did not improve the algorithm’s performance. Inter-device differences were small except for red cell distribution width. Conclusions The RLE is well-suited to create reference intervals from clinical laboratory databases even in the challenging setting of a adult tertiary care center. The procedure can be used as a complement for reference interval determination where conventional approaches are limited.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...