GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Walter de Gruyter GmbH  (7)
  • 1
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 9, No. 1 ( 2020-01-28), p. 149-157
    Abstract: Half-wave plate (HWP) is one of the key polarization controlling devices in optical systems. The conventional HWPs based on birefringent crystals are inherently bulky and difficult to be monolithically integrated with other optical components. In this work, metasurface-based HWPs with high compactness are demonstrated on a 12-inch silicon complementary metal-oxide-semiconductor platform. Three-dimensional finite difference time domain simulation is used to design the nanostructure and investigate the impact of fabrication process variation on the device performance. In addition, the cross- and co-polarization transmittance ( T cross and T co ) of the HWPs located at different wafer locations are characterized experimentally. The peak T cross and valley T co values of 0.69 ± 0.053 and 0.032 ± 0.005 are realized at the wavelength around 1.7 μm, respectively. This corresponds to a polarization conversion efficiency of 95.6% ± 0.8%.
    Type of Medium: Online Resource
    ISSN: 2192-8614 , 2192-8606
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2020
    In:  Nanophotonics Vol. 9, No. 10 ( 2020-08-14), p. 3071-3087
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 9, No. 10 ( 2020-08-14), p. 3071-3087
    Abstract: A metasurface is a layer of subwavelength-scale nanostructures that can be used to design functional devices in ultrathin form. Various metasurface-based optical devices – coined as flat optics devices – have been realized with distinction performances in research laboratories using electron beam lithography. To make such devices mass producible at low cost, metasurfaces over a large area have also been defined with lithography steppers and scanners, which are commonly used in semiconductor foundries. This work reviews the metasurface process platforms and functional devices fabricated using complementary metal-oxide-semiconductor-compatible mass manufacturing technologies. Taking both fine critical dimension and mass production into account, the platforms developed at the Institute of Microelectronics (IME), A*STAR using advanced 12-inch immersion lithography have been presented with details, including process flow and demonstrated optical functionalities. These developed platforms aim to drive the flat optics from lab to fab.
    Type of Medium: Online Resource
    ISSN: 2192-8614 , 2192-8606
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 9, No. 4 ( 2020-04-28), p. 823-830
    Abstract: Metalenses made of artificial sub-wavelength nanostructures have shown the capability of light focusing and imaging with a miniaturized size. Here, we report the demonstration of mass-producible amorphous silicon metalenses on a 12-inch glass wafer via the complementary metal-oxide-semiconductor compatible process. The measured numerical aperture of the fabricated metalens is 0.496 with a focusing spot size of 1.26 μm at the wavelength of 940 nm. The metalens is applied in an imaging system to test the imaging resolution. The minimum bar of the resolution chart with a width of 2.19 μm is clearly observed. Furthermore, the same system demonstrates the imaging of a fingerprint, and proofs the concept of using metalens array to reduce the system size for future compact consumer electronics.
    Type of Medium: Online Resource
    ISSN: 2192-8614
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 8, No. 10 ( 2019-09-25), p. 1855-1861
    Abstract: Metasurface-based beam deflector, as an important optical element to bend the light propagation direction, has drawn a lot of interests in research to achieve miniaturization of devices and reduction of system complexity. Based on the 12-inch immersion lithography technology, in this work, an ultra-thin and large-area pixelated metasurface beam deflector with a footprint of 2500 × 2500 μm, formed by nanopillars with diameters from 221 to 396 nm, is demonstrated on a 12-inch glass wafer. The 21 × 21 array of deflectors is designed to bend the input light in different directions and to generate 441 random points. In addition, the layer transfer on the 12-inch glass wafer makes the device working in transmission mode at a 940-nm wavelength. The random point array generated from the experiment shows good match with the design. This pixelated metasurface beam deflector can generate random points simultaneously and has potential to make beam steering by switching each pixel of the beam deflector, which can be applied on motion detection, facial recognition, and light detection and ranging.
    Type of Medium: Online Resource
    ISSN: 2192-8614 , 2192-8606
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2021
    In:  Nanophotonics Vol. 10, No. 9 ( 2021-07-08), p. 2347-2387
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 10, No. 9 ( 2021-07-08), p. 2347-2387
    Abstract: Integrated photonics based on silicon has drawn a lot of interests, since it is able to provide compact solution for functional devices, and its fabrication process is compatible with the mature complementary metal-oxide-semiconductor (CMOS) fabrication technology. In the meanwhile, silicon material itself has a few limitations, including an indirect bandgap of 1.1 eV, transparency wavelength of 〉 1.1 μm, and insignificant second-order nonlinear optical property. Aluminum nitride (AlN), as a CMOS-compatible material, can overcome these limitations. It has a wide bandgap of 6.2 eV, a broad transparency window covering from ultraviolet to mid-infrared, and a significant second-order nonlinear optical effect. Furthermore, it also exhibits piezoelectric and pyroelectric effects, which enable it to be utilized for optomechanical devices and pyroelectric photodetectors, respectively. In this review, the recent research works on integrated AlN photonics in the past decade have been summarized. The related material properties of AlN have been covered. After that, the demonstrated functional devices, including linear optical devices, optomechanical devices, emitters, photodetectors, metasurfaces, and nonlinear optical devices, are presented. Last but not the least, the summary and future outlook for the AlN-based integrated photonics are provided.
    Type of Medium: Online Resource
    ISSN: 2192-8614 , 2192-8606
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2022
    In:  Nanophotonics Vol. 11, No. 13 ( 2022-06-15), p. 2989-3006
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 11, No. 13 ( 2022-06-15), p. 2989-3006
    Abstract: To meet the high demand of data transmission capacity, optical communications systems have been developed. In order to increase the channel numbers for larger communication bandwidth, multi-mode lasers and laser arrays can be used. As an alternative coherent light source, optical frequency comb (OFC) contains multi-wavelength signal, and hence enables communication with data stream of tens of terabit/s. Fully integrated electrically driven OFCs are expected as a compact, robust, and low-cost light source for data communication. In this review article, the recent development progress on fully integrated electrically driven OFC generators are reviewed, with focus on the demonstrations in the past five years. Based on comb generation approaches, the works are categorized into two main types: one is OFC generators based on four-wave mixing in high- Q resonator, and the other is OFC generators based on mode-locked laser. At the end, a summary and future outlook are provided.
    Type of Medium: Online Resource
    ISSN: 2192-8614
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2021
    In:  Nanophotonics Vol. 10, No. 5 ( 2021-03-16), p. 1437-1467
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 10, No. 5 ( 2021-03-16), p. 1437-1467
    Abstract: With the emerging trend of big data and internet-of-things, sensors with compact size, low cost and robust performance are highly desirable. Spectral imaging and spectral LIDAR systems enable measurement of spectral and 3D information of the ambient environment. These systems have been widely applied in different areas including environmental monitoring, autonomous driving, biomedical imaging, biometric identification, archaeology and art conservation. In this review, modern applications of state-of-the-art spectral imaging and spectral LIDAR systems in the past decade have been summarized and presented. Furthermore, the progress in the development of compact spectral imaging and LIDAR sensing systems has also been reviewed. These systems are based on the nanophotonics technology. The most updated research works on subwavelength scale nanostructure-based functional devices for spectral imaging and optical frequency comb-based LIDAR sensing works have been reviewed. These compact systems will drive the translation of spectral imaging and LIDAR sensing from table-top toward portable solutions for consumer electronics applications. In addition, the future perspectives on nanophotonics-based spectral imaging and LIDAR sensing are also presented.
    Type of Medium: Online Resource
    ISSN: 2192-8614 , 2192-8606
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...