GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 9, No. 1 ( 2021-07-07)
    Abstract: The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2021
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 11, No. 1 ( 2023-03-31)
    Abstract: Particle size distribution (PSD) is a fundamental property that affects almost every aspect of the marine ecosystem, including ecological trophic interactions and transport of organic matter and trace elements. We measured PSDs using a suite of seven instruments in waters near Ocean Station Papa in the Northeast Pacific Ocean. These instruments and their sizing ranges are: Laser In-Situ Scattering and Transmissometer (LISST)-Volume Scattering Function meter (VSF) and Multispectral Volume Scattering Meter (MVSM), both sizing particles from 0.02 µm to 2000 µm; the LISST-100X, from 3 µm to 180 µm; the ViewSizer, from 0.3 µm to 2 µm; the Coulter Counter, from 2 µm to 40 µm; the Imaging Flow CytoBot (IFCB), from 5 µm to 100 μm; and the underwater vision profiler (UVP), from 100 µm to 2000 µm. Together, they cover an unprecedented size range spanning 5 orders of magnitude from 20 nm to 2 mm. The differences in size definition for the different instruments cause biases in comparing PSDs. The absolute differences in PSDs, after correcting for mean biases, were less than a factor of 3 among all the instruments, and within 50% among LISST-100X, LISST+MVSM, Coulter Counter and IFCB. We also found that particles of sizes & lt;50 µm were not very porous; however, porosity must be considered for particles & gt;50 µm. The merged PSDs, ranging from 0.02 µm to 2000 µm, showed little variation in the PSD slope in the upper 75 m of the water column even though the total number of particles decreased with depth. While submicrometer particles are numerically dominant, particles of sizes 1 µm to 100 µm account for 70–90% of the solid volume of particles. We expect that the results of this study will lead to improved estimates of mass and carbon flux in the study area.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2023
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    University of California Press ; 2021
    In:  Elementa: Science of the Anthropocene Vol. 9, No. 1 ( 2021-06-09)
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 9, No. 1 ( 2021-06-09)
    Abstract: As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios & lt;1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were & gt;1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2021
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...