GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Trans Tech Publications, Ltd.  (2)
Material
Publisher
  • Trans Tech Publications, Ltd.  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2006
    In:  Materials Science Forum Vol. 518 ( 2006-7), p. 405-410
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 518 ( 2006-7), p. 405-410
    Abstract: New functional homopolymeric, semiconducting materials soluble in polar solvents, were synthesized by chemical oxidative polymerization of 4-amino-3-hydroxynaphthalene-1- sulfonic acid (AHNSA) and its salts, using ammonium peroxydisulfate as an oxidant, in water at room temperature. Polymerization products obtained from AHNSA, AHNSA hydrochloride, AHNSA mono-sodium salt and AHNSA di-sodium salt were characterized by elemental analysis, gel-permeation chromatography (GPC), infrared spectroscopy (IR) and conductivity measurements. Polymers of AHNSA salts have increased weight-average molecular weights and polydispersity index values, compared to AHNSA polymer. Molecular weights approach a maximum value of ~25200 for polymers of AHNSA salts. Elemental analysis data of polymeric samples show a decrease of the S/C ratio for all polymeric materials in comparison with the monomer, indicating considerable elimination of sulfonic acid group from the macromolecular structure during the polymerization process. New substitution patterns shown by IR spectroscopic analysis combined with MNDO-PM3 semi-empirical quantum mechanical calculations revealed N─C coupling reactions as dominant, where C belongs to unsubstituted AHNSA ring. Coupling mode N─C1 is also important. Naphthoquinonoid and benzenoid structures were observed by IR spectroscopy. Influence of pH on the AHNSA oxidative chemical polymerization mechanism was examined.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2006
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2007
    In:  Materials Science Forum Vol. 555 ( 2007-9), p. 503-508
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 555 ( 2007-9), p. 503-508
    Abstract: New functional polymeric, semiconducting materials were synthesized by chemical oxidative polymerization of acriflavine hydrochloride in aqueous solution at room temperature, using ammonium peroxydisulfate as an oxidant. Polymerization products were characterized by gelpermeation chromatography (GPC), FTIR spectroscopy, scanning electron microscopy (SEM) and conductivity measurements. The influence of the oxidant/monomer molar ratio on the molecular structure, molecular weight distribution and the electrical conductivity of polyacriflavines was studied. Molecular weights approach a maximum value of ~20000. The polyacriflavine prepared by using oxidant/monomer molar ratio 1.25 shows the conductivity of 2.8 × 10–7 S cm–1. New substitution pattern shown by FTIR spectroscopic analysis combined with MNDO-PM3 semiempirical quantum chemical calculations revealed N─C2 coupling reactions as dominant. The formation of phenazine rings in ladder structured polymerization products was observed by FTIR spectros copy. The existence of a certain polyacriflavine crystalline structure was suggested from the SEM micrographs.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2007
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...