GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 279, No. 1726 ( 2012-01-07), p. 194-201
    Abstract: Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2012
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Royal Society Open Science, The Royal Society, Vol. 4, No. 12 ( 2017-12), p. 171056-
    Abstract: At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed ( Cynanthus latirostris , 3.0 g), black-chinned ( Archilochus alexandri , 3.0 g), Rivoli's ( Eugenes fulgens , 7.5 g) and blue-throated ( Lampornis clemenciae , 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds ( Selasphorus calliope , 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations.
    Type of Medium: Online Resource
    ISSN: 2054-5703
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 2787755-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 280, No. 1760 ( 2013-06-07), p. 20130423-
    Abstract: Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2013
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Royal Society ; 2018
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 285, No. 1872 ( 2018-02-14), p. 20172378-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 285, No. 1872 ( 2018-02-14), p. 20172378-
    Abstract: Global variation in species richness is widely recognized, but the explanation for what drives it continues to be debated. Previous efforts have focused on a subset of potential drivers, including evolutionary rate, evolutionary time (maximum clade age of species restricted to a region), dispersal (migration from one region to another), ecological factors and climatic stability. However, no study has evaluated these competing hypotheses simultaneously at a broad spatial scale. Here, we examine their relative contribution in determining the richness of the most comprehensive dataset of tetrapods to our knowledge (84% of the described species), distinguishing between the direct influences of evolutionary rate, evolutionary time and dispersal, and the indirect influences of ecological factors and climatic stability through their effect on direct factors. We found that evolutionary time exerted a primary influence on species richness, with evolutionary rate being of secondary importance. By contrast, dispersal did not significantly affect richness patterns. Ecological and climatic stability factors influenced species richness indirectly by modifying evolutionary time (i.e. persistence time) and rate. Overall, our findings suggest that global heterogeneity in tetrapod richness is explained primarily by the length of time species have had to diversify.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Royal Society ; 2022
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 289, No. 1982 ( 2022-09-14)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 289, No. 1982 ( 2022-09-14)
    Abstract: Community ecologists have made great advances in understanding how natural communities can be both diverse and stable by studying communities as interaction networks. However, focus has been on interaction networks aggregated over time, neglecting the consequences of the seasonal organization of interactions (hereafter 'seasonal structure') for community stability. Here, we extended previous theoretical findings on the topic in two ways: (i) by integrating empirical seasonal structure of 11 plant–hummingbird communities into dynamic models, and (ii) by tackling multiple facets of network stability together. We show that, in a competition context, seasonal structure enhances community stability by allowing diverse and resilient communities while preserving their robustness to species extinctions. The positive effects of empirical seasonal structure on network stability vanished when using randomized seasonal structures, suggesting that eco-evolutionary dynamics produce stabilizing seasonal structures. We also show that the effects of seasonal structure on community stability are mainly mediated by changes in network structure and productivity, suggesting that the seasonal structure of a community is an important and yet neglected aspect in the diversity–stability and diversity–productivity debates.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2022
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 288, No. 1965 ( 2021-12-22)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 288, No. 1965 ( 2021-12-22)
    Abstract: Insular biodiversity is expected to be regulated differently than continental biota, but their determinants remain to be quantified at a global scale. We evaluated the importance of physical, environmental and historical factors on mammal richness and endemism across 5592 islands worldwide. We fitted generalized linear and mixed models to accommodate variation among biogeographic realms and performed analyses separately for bats and non-volants. Richness on islands ranged from one to 234 species, with up to 177 single island endemics. Diversity patterns were most consistently influenced by the islands’ physical characteristics. Area positively affected mammal diversity, in particular the number of non-volant endemics. Island isolation, both current and past, was associated with lower richness but greater endemism. Flight capacity modified the relative importance of past versus current isolation, with bats responding more strongly to current and non-volant mammals to past isolation. Biodiversity relationships with environmental factors were idiosyncratic, with a tendency for greater effects sizes with endemism than richness. The historical climatic change was positively associated with endemism. In line with theory, we found that area and isolation were among the strongest drivers of mammalian biodiversity. Our results support the importance of past conditions on current patterns, particularly of non-volant species.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    The Royal Society ; 2023
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 290, No. 1997 ( 2023-04-26)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 290, No. 1997 ( 2023-04-26)
    Abstract: How traits affect speciation is a long-standing question in evolution. We investigate whether speciation rates are affected by the traits themselves or by the rates of their evolution, in hummingbirds, a clade with great variation in speciation rates, morphology and ecological niches. Further, we test two opposing hypotheses, postulating that speciation rates are promoted by trait conservatism or, alternatively, by trait divergence. To address these questions, we analyse morphological (body mass and bill length) and niche traits (temperature and precipitation position and breadth, and mid-elevation), using a variety of methods to estimate speciation rates and correlate them with traits and their evolutionary rates. When it comes to the traits, we find faster speciation in smaller hummingbirds with shorter bills, living at higher elevations and experiencing greater temperature ranges. As for the trait evolutionary rates, we find that speciation increases with rates of divergence in the niche traits, but not in the morphological traits. Together, these results reveal the interplay of mechanisms through which different traits and their evolutionary rates (conservatism or divergence) influence the origination of hummingbird diversity.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 280, No. 1763 ( 2013-07-22), p. 20131237-
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2013
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The Royal Society ; 2016
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 283, No. 1837 ( 2016-08-31), p. 20161028-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 283, No. 1837 ( 2016-08-31), p. 20161028-
    Abstract: The taxonomic, phylogenetic and trait dimensions of beta diversity each provide us unique insights into the importance of historical isolation and environmental conditions in shaping global diversity. These three dimensions should, in general, be positively correlated. However, if similar environmental conditions filter species with similar trait values, then assemblages located in similar environmental conditions, but separated by large dispersal barriers, may show high taxonomic, high phylogenetic, but low trait beta diversity. Conversely, we expect lower phylogenetic diversity, but higher trait biodiversity among assemblages that are connected but are in differing environmental conditions. We calculated all pairwise comparisons of approximately 110 × 110 km grid cells across the globe for more than 5000 mammal species (approx. 70 million comparisons). We considered realms as units representing geographical distance and historical isolation and biomes as units with similar environmental conditions. While beta diversity dimensions were generally correlated, we highlight geographical regions of decoupling among beta diversity dimensions. Our analysis shows that assemblages from tropical forests in different realms had low trait dissimilarity while phylogenetic beta diversity was significantly higher than expected, suggesting potential convergent evolution. Low trait beta diversity was surprisingly not found between isolated deserts, despite harsh environmental conditions. Overall, our results provide evidence for parallel assemblage structure of mammal assemblages driven by environmental conditions at a global scale.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2016
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 287, No. 1927 ( 2020-05-27), p. 20192750-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 287, No. 1927 ( 2020-05-27), p. 20192750-
    Abstract: Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O 2 ), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O 2 extraction, arterial O 2 saturation, cardiac output and arterial–venous O 2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiological toolkit for coping with the challenges at high altitude.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...