GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Royal Society  (4)
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Biology Letters Vol. 17, No. 7 ( 2021-07), p. 20210071-
    In: Biology Letters, The Royal Society, Vol. 17, No. 7 ( 2021-07), p. 20210071-
    Abstract: The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO 2 ) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO 2 ). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.
    Type of Medium: Online Resource
    ISSN: 1744-957X
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 2103283-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2023
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 290, No. 2006 ( 2023-09-13)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 290, No. 2006 ( 2023-09-13)
    Abstract: Phenotypic plasticity and evolutionary adaptation allow populations to cope with global change, but limits and costs to adaptation under multiple stressors are insufficiently understood. We reared a foundational copepod species, Acartia hudsonica , under ambient (AM), ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) conditions for 11 generations (approx. 1 year) and measured population fitness (net reproductive rate) derived from six life-history traits (egg production, hatching success, survival, development time, body size and sex ratio). Copepods under OW and OWA exhibited an initial approximately 40% fitness decline relative to AM, but fully recovered within four generations, consistent with an adaptive response and demonstrating synergy between stressors. At generation 11, however, fitness was approximately 24% lower for OWA compared with the AM lineage, consistent with the cost of producing OWA-adapted phenotypes. Fitness of the OWA lineage was not affected by reversal to AM or low food environments, indicating sustained phenotypic plasticity. These results mimic those of a congener, Acartia tonsa , while additionally suggesting that synergistic effects of simultaneous stressors exert costs that limit fitness recovery but can sustain plasticity. Thus, even when closely related species experience similar stressors, species-specific costs shape their unique adaptive responses.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Royal Society Open Science Vol. 6, No. 3 ( 2019-03), p. 182115-
    In: Royal Society Open Science, The Royal Society, Vol. 6, No. 3 ( 2019-03), p. 182115-
    Abstract: Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
    Type of Medium: Online Resource
    ISSN: 2054-5703
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 2787755-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 288, No. 1944 ( 2021-02-10), p. 20202480-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 288, No. 1944 ( 2021-02-10), p. 20202480-
    Abstract: Induced prey defences against consumers are conspicuous in microbes, plants and animals. In toxigenic prey, a defence fitness cost should result in a trade-off between defence expression and individual growth. Yet, previous experimental work has failed to detect such induced defence cost in toxigenic phytoplankton. We measured a potential direct fitness cost of grazer-induced toxin production in a red tide dinoflagellate prey using relative gene expression (RGE) of a mitotic cyclin gene ( cyc ), a marker that correlates to cell growth. This approach disentangles the reduction in cell growth from the defence cost from the mortality by consumers. Treatments where the dinoflagellate Alexandrium catenella were exposed to copepod grazers significantly increased toxin production while decreasing RGE of cyc , indicating a defence-growth trade-off. The defence fitness cost represents a mean decrease of the cell growth rate of 32%. Simultaneously, we estimate that the traditional method to measure mortality loss by consumers is overestimated by 29%. The defence appears adaptive as the prey population persists in quasi steady state after the defence is induced. Our approach provides a novel framework to incorporate the fitness cost of defence in toxigenic prey–consumer interaction models.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...