GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Organoid Society  (2)
Material
Publisher
  • The Organoid Society  (2)
Language
Years
  • 1
    In: Organoid, The Organoid Society, Vol. 3 ( 2023-03-25), p. e6-
    Abstract: BackgroundTumor vasculature is a crucial pathway for supplying nutrients and oxygen to tumors during their progression, as well as facilitating the delivery of anticancer drugs or immunotherapeutic agents. Microfluidic technology has emerged as a powerful tool in creating microenvironments within 3D cell cultures that more closely resemble in vivo conditions, by enabling precise control of fluid flow. As a result, microfluidic devices have made significant progress in replicating both the structural and functional characteristics of the tumor microenvironment in vitro. Methods and ResultsIn this study, we present two approaches for reconstructing the tumor vasculature using tumor spheroids or microtumors, with a particular focus on in vivo functional mimicry and experimental reproducibility. Tumor spheroid-based vascular models provide an observatory window into tumor vasculature centered on tumor spheroids, enabling quantitative measurement of the degree of abnormality of blood vessels developing around the tumor spheroid and the invasiveness of metastatic tumors. Microtumor-based vascular models, on the other hand, have the potential to enhance our comprehension of advanced and metastatic cancers at the single-cell level by elucidating the proliferative and metastatic capacities of tumor cells, as well as the vascular permeability that is contingent upon the subtypes of tumor cells. ConclusionOur platforms provide valuable insights into the development of novel in vitro models for studying the tumor microenvironment and advancing our understanding of cancer biology.
    Type of Medium: Online Resource
    ISSN: 2765-205X
    Language: English
    Publisher: The Organoid Society
    Publication Date: 2023
    detail.hit.zdb_id: 3164653-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Organoid, The Organoid Society, Vol. 3 ( 2023-02-25), p. e3-
    Abstract: Research on the development of anti-cancer drugs has progressed, but the low reliability of animal experiments due to biological differences between animals and humans causes failures in the clinical process. To overcome this limitation, 3-dimensional (3D) in vitro models have been developed to mimic the human cellular microenvironment using polydimethylsiloxane (PDMS). However, due to the characteristics and limitations of PDMS, it has low efficiency and is not suitable to be applied in the preclinical testing of a drug. High-throughput microfluidic platforms fabricated by injection molding have been developed, but these platforms require a laborious process when handling spheroids. We recently developed an injection-molded plastic array 3D culture tissue platform that integrates the process from spheroid formation to reconstruction of an in vitro model with spheroids (All-in-One-IMPACT). In this study, we implemented a 3D tumor spheroid angiogenesis model in the developed platform. We analyzed the tendency for angiogenesis according to gel concentration and confirmed that angiogenesis occurred using cancer cell lines and patient-derived cancer cells (PDCs). We also administered an anti-cancer drug to the PDC tumor spheroid angiogenesis model to observe the drug’s effect on angiogenesis according to its concentration. We demonstrated that our platform can be used to study the tumor microenvironment (TME) and drug screening. We expect that this platform will contribute to further research on the complex mechanisms of the TME and predictive preclinical models.
    Type of Medium: Online Resource
    ISSN: 2765-205X
    Language: English
    Publisher: The Organoid Society
    Publication Date: 2023
    detail.hit.zdb_id: 3164653-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...