GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-04
    Description: Recent evidence suggests that specialized proresolving lipid mediators (SPMs) generated from docosahexaenoic acid (DHA) can modulate the vascular injury response. However, cellular sources for these autacoids within the vessel wall remain unclear. Here, we investigated whether isolated vascular cells and tissues can produce SPMs and assessed expression and subcellular localization of the key SPM biosynthetic enzyme 5-lipoxygenase (LOX) in vascular cells. Intact human arteries incubated with DHA ex vivo produced 17-hydroxy DHA (17-HDHA) and D-series resolvins, as assessed by liquid chromatography-tandem mass spectrometry. Addition of 17-HDHA to human arteries similarly increased resolvin production. Primary cultures of human saphenous vein endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) converted 17-HDHA to SPMs, including resolvin D1 (RvD1) and other D-series resolvins and protectins. This was accompanied by a rapid translocation of 5-LOX from nucleus to cytoplasm in both ECs and VSMCs, potentially facilitating SPM biosynthesis. Conditioned medium from cells exposed to 17-HDHA inhibited monocyte adhesion to TNF-α–stimulated EC monolayers. These downstream effects were partially reversed by antibodies against the RvD1 receptors ALX/FPR2 and GPR32. These results suggest that autocrine and/or paracrine signaling via locally generated SPMs in the vasculature may represent a novel homeostatic mechanism of relevance to vascular health and disease.—Chatterjee, A., Komshian, S., Sansbury, B. E., Wu, B., Mottola, G., Chen, M., Spite, M., Conte, M. S. Biosynthesis of proresolving lipid mediators by vascular cells and tissues.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-31
    Description: Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays. A rabbit model of arterial angioplasty with local delivery of RvD2 (10 nM vs. vehicle control) was employed to examine effects on vascular injury in vivo . Local generation of proresolving lipid mediators (LC-MS/MS) and expression of RvD receptors in the vessel wall were assessed. RvD1 and RvD2 produced dose-dependent inhibition of VSMC proliferation, migration, monocyte adhesion, superoxide production, and proinflammatory gene expression (IC 50 0.1–1 nM). In balloon-injured rabbit arteries, cell proliferation (51%) and leukocyte recruitment (41%) were reduced at 3 d, and neointimal hyperplasia was attenuated (29%) at 28 d by RvD2. We demonstrate endogenous biosynthesis of proresolving lipid mediators and expression of receptors for RvD1 in the artery wall. RvDs broadly reduce VSMC responses and modulate vascular injury, suggesting that local activation of resolution mechanisms expedites vascular homeostasis.—Miyahara, T., Runge, S., Chatterjee, A., Chen, M., Mottola, G., Fitzgerald, J. M., Serhan, C. N., Conte, M. S. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-01
    Description: The role of resolvins in abdominal aortic aneurysm (AAA) has not been established. We hypothesized that treatment with D-series resolvins (RvD2 or RvD1) would attenuate murine AAA formation through alterations in macrophage polarization and cytokine expression. Male C57/B6 mice ( n = 9 per group) 8 to 12 wk old received RvD2 (100 ng/kg/treatment), RvD1 (100 ng/kg/treatment), or vehicle only every third day beginning 3 d before abdominal aortic perfusion with elastase as prevention. Aortas were collected 14 d after elastase perfusion. Cytokine analysis ( n = 5 per group) or confocal microscopy ( n = 4 per group) was performed. In a separate experiment, RvD2 was provided to mice with small AAAs 3 d after elastase treatment ( n = 8 per group). Additionally, apolipoprotein E knockout mice treated with angiotensin II (1000 ng/kg) were treated with RvD2 or vehicle alone ( n = 10 per group) in a nonsurgical model of AAA. To determine the effect of RvD2 on macrophage polarization, confocal staining for macrophages, M1 and M2 macrophage subtypes, α-actin, and DAPI was performed. Mean aortic dilation was 96 ± 13% for vehicle-treated mice, 57 ± 9.7% for RvD2-treated mice, and 61 ± 11% for RvD1-treated mice ( P 〈 0.0001). Proinflammatory cytokines macrophage chemotactic protein 1, C-X-C motif ligand 1, and IL-1β were significantly elevated in control animals compared to RvD2- and RvD1-treated animals ( P 〈 0.05), resulting in a reduction of matrix metalloproteinase 2 and 9 activity in resolvin-treated mice in both elastase and angiotensin II models. Treatment of existing small AAAs with RvD2 demonstrated a 25% reduction in aneurysm size at d 14 compared to vehicle alone ( P = 0.018). Confocal histology demonstrated a prevalence of M2 macrophages within the aortic medium in mice treated with RvD2. Resolvin D2 exhibits a potent protective effect against experimental AAA formation. Treatment with RvD2 significantly influences macrophage polarization and decreases several important proinflammatory cytokines. Resolvins and the alteration of macrophage polarization represent potential future targets for prevention of AAA.—Pope, N. H., Salmon, M., Davis, J. P., Chatterjee, A., Su, G., Conte, M. S., Ailawadi, G., Upchurch, G. R., Jr. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-01
    Description: There has been a dramatic increase in the number and percentage of publications in biomedical and clinical journals in which two or more coauthors claim first authorship, with a change in some journals from no joint first authorship in 1990 to co-first authorship of 〉30% of all research publications in 2012. As biomedical and clinical research become increasingly complex and team-driven, and given the importance attributed to first authorship by grant reviewers and promotion and tenure committees, the time is ripe for journals, bibliographic databases, and authors to highlight equal first author contributions of published original research.—Conte, M. L., Maat, S. L., Omary, M. B. Increased co-first authorships in biomedical and clinical publications: a call for recognition.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-02
    Description: Vascular injury induces a potent inflammatory response that influences vessel remodeling and patency, limiting long-term benefits of cardiovascular interventions such as angioplasty. Specialized proresolving lipid mediators (SPMs) derived from -3 polyunsaturated fatty acids [eicosapentaenoic acid and docosahexaenoic acid (DHA)] orchestrate resolution in diverse settings of acute inflammation. We hypothesized that systemic administration of DHA-derived SPMs [resolvin D2 (RvD2) and maresin 1 (MaR1)] would influence vessel remodeling in a mouse model of arterial neointima formation (carotid ligation). In vitro, SPM treatment inhibited mouse aortic smooth muscle cell migration (IC 50 1 nM) to a PDGF gradient and reduced TNF- α– stimulated p65 translocation, superoxide production, and proinflammatory gene expression (MCP-1). In vivo, adult FVB mice underwent unilateral carotid artery ligation with administration of RvD2, MaR1, or vehicle (100 ng by intraperitoneal injection at 0, 1, 3, 5, and 7 d after ligation). In ligated carotid arteries at 4 d, SPM treatment was associated with reduced cell proliferation and neutrophil and macrophage recruitment and increased polarization of M2 macrophages in the arterial wall. Neointimal hyperplasia (at 14 d) was notably attenuated in RvD2 (62%)- and MaR1 (67%)-treated mice, respectively. Modulation of resolution pathways may offer new opportunities to regulate the vascular injury response and promote vascular homeostasis.—Akagi, D., Chen, M., Toy, R., Chatterjee, A., Conte, M. S. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...