GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-01
    Description: Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-29
    Description: [1]  Groundwater-dependent ecosystems (GDEs) in arid and semiarid environments play significant ecological roles, and, yet in many parts of the world, these ecosystems have been drained for agricultural use. In wetlands containing acid sulfate soils, the altered hydrology may trigger acidification and subsequent trace metal release. Quantifying shifts in hydrological regime and connectivity dynamics across wetlands is critical for understanding the resilience of these GDEs to anthropogenic impacts. Seasonal water balances for a wetland severely impacted by drainage and acidification were combined with laboratory geochemical data and field observations to develop a conceptual model describing hydrological connectivity across the wetland. The data indicated that, with the onset of the dry season, the superficial aquifer was lowered, exposing sulfides that oxidized to form sulfuric acid and dissolving metal salts. The following dry season enhanced capillary action causing upwelling of oxidized products to the surface where evaporative precipitation created acidity scalds. Subsequent winter rainfall and infiltration caused groundwater levels to rise, intersect with the ground surface, and form disconnected acidic pools. As the wet season progressed, connectivity was established between the pools, resulting in metal-rich acid discharge from the wetland. The degree of acid fluxes and metal release was controlled by the physicochemical characteristics of the soils, its exposure to the seasonally variable wetland hydrology, antecedent hydrological conditions, hydrological connectivity (both vertical and horizontal), and the resulting biogeochemical conditions.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-29
    Description: Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein possesses a unique membrane-transduction property. Interestingly, Tat transduction could be dramatically increased 1000-fold based on LTR-transactivation assay when complexed with cationic liposomes (lipo-Tat), compared with Tat alone. Therefore, underlining mechanisms were explored further. Microscopy and flow cytometry showed that this effect was associated with enhanced membrane binding, large particle formation (1–2 μm) and increased intracellular uptake of Tat fluorescent proteins. Using pharmacological assays and immune colocalizations, it was found that lipid raft-dependent endocytosis and macropinocytosis were major pathways involved in lipo-Tat uptake, and actin-filaments played a major role in intracellular trafficking of lipo-Tat to the nucleus. Furthermore, we found that the Tat hydrophobic domain (aa 36–47) mediated formation of two positively charged molecules into lipo-Tat complexes via hydrophobic bonds, based on LTR-transactivation inhibition assay. Thus, the hydrophobic domain may play an important role in Tat protein uptake and be useful for intracellular delivery of biomacromolecules if coupled together with Tat basic peptide, a cell-penetrating peptide.—Li, G.-H., Li, W., Mumper, R. J., Nath, A. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...