GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 6, No. 6 ( 2022-06-01)
    Abstract: Steroid 21-hydroxylase is an enzyme of the steroid pathway that is involved in the biosynthesis of cortisol and aldosterone by hydroxylation of 17α-hydroxyprogesterone and progesterone at the C21 position. Mutations in CYP21A2, the gene encoding 21-hydroxylase, cause the most frequent form of the autosomal recessive disorder congenital adrenal hyperplasia (CAH). In this study, we generated a humanized 21-hydroxylase mouse model as the first step to the generation of mutant mice with different CAH-causing mutations. We replaced the mouse Cyp21a1 gene with the human CYP21A2 gene using homologous recombination in combination with CRISPR/Cas9 technique. The aim of this study was to characterize the new humanized mouse model. All results described are related to the homozygous animals in comparison with wild-type mice. We show analogous expression patterns of human 21-hydroxylase by the murine promoter and regulatory elements in comparison to murine 21-hydroxylase in wild-type animals. As expected, no Cyp21a1 transcript was detected in homozygous CYP21A2 adrenal glands. Alterations in adrenal gene expression were observed for Cyp11a1, Star, and Cyb11b1. These differences, however, were not pathological. Outward appearance, viability, growth, and fertility were not affected in the humanized CYP21A2 mice. Plasma steroid levels of corticosterone and aldosterone showed no pathological reduction. In addition, adrenal gland morphology and zonation were similar in both the humanized and the wild-type mice. In conclusion, humanized homozygous CYP21A2 mice developed normally and showed no differences in histological analyses, no reduction in adrenal and gonadal gene expression, or in plasma steroids in comparison with wild-type littermates.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2022
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 7, No. Supplement_1 ( 2023-10-05)
    Abstract: Disclosure: A. Huebner: None. S. Thirumalasetty: None. T. Schubert: None. R. Naumann: None. I. Reichardt: None. M. Rohm: None. D. Landgraf: None. F. Gembardt: None. M.F. Hartmann: None. S.A. Wudy: None. M. Peitzsch: None. N. Reisch: None. K. Koehler, PhD: None. 21-hydroxylase deficiency (21OHD) is the most common form of congenital adrenal hyperplasia (CAH) and is caused by mutations in the CYP21A2 gene. 21OHD causes a wide array of clinical symptoms that result from gluco- and mineralocorticoid deficiency and adrenal androgen excess. Treatment firstly aims to substitute lacking steroid hormones, and secondly to restore negative feedback towards CRH and pituitary ACTH secretion to diminish adrenal androgen overproduction. In most cases supra-physiological glucocorticoid doses are necessary which may cause short stature, obesity, hypertension, and cardiovascular and metabolic co-morbidity with reduced quality of life. Hence, current steroid substitution regimens have significant limitations, so novel therapeutic strategies are required. In recent years new therapeutic approaches have emerged including new non-glucocorticoid substances interfering with the HPA axis to minimize adrenal androgen production and to lower external glucocorticoid substitution to physiological levels. However, valuable in-vivo models for pre-clinical testing of such drugs are lacking. Here we present the first viable and humanized mouse model in which the mouse gene Cyp21a1 is replaced by the human orthologue CYP21A2 in which the human point mutation R484Q is integrated. Twenty-weeks-old homozygous mice show marked adrenal hyperplasia, enhanced expression of the CYP21A2 gene and a weak increase of Cyp11a1 and Cyp11b2 gene expression. Tandem mass spectrometry measurements of the mice plasma at 20 weeks show decreased corticosterone and 11-deoxycorticosterone levels in the presence of increased ACTH levels in both male and female homozygous animals. Progesterone levels in homozygous mice are significantly higher (p & lt;0.01) than in wildtype mice. We also observed increased aldosterone levels in female mutants whereas blood pressure does not differ between wildtype and mutant mice strains. Histologically, mutants exhibit adrenocortical hyperplasia. While mutant male mice are fertile with normal appearing testes, females are infertile, remain in the diestrus phase and present with a reduced number of ovarian follicles. In parallel, a second mouse strain bearing the I173N mutation was developed. This mutation is frequent in human patients causing simple virilizing or rarely salt wasting CAH. Homozygous mice require dexamethasone treatment during pregnancy and until weaning but are viable without treatment afterwards. Preliminary results show adrenal hyperplasia and alteration in steroidogenic gene expression and steroid profiles. In conclusion, we demonstrate that the humanized mutant CYP21A2 mice may represent an excellent animal CAH model to test novel treatment strategies for CAH patients. We believe that this model(s) will facilitate the transition from basic research into clinical application. Presentation: Saturday, June 17, 2023
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2023
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...