GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-20
    Description: Catarina Osorio, Pedro J. Chacon, Lilian Kisiswa, Matthew White, Sean Wyatt, Alfredo Rodriguez-Tebar, and Alun M. Davies Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor β superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo , the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-01
    Description: Laura Howard, Sean Wyatt, Guhan Nagappan, and Alun M. Davies The somatosensory and sympathetic innervation of the vertebrate head is derived principally from the neurons of trigeminal and superior cervical ganglia (SCG), respectively. During development, the survival of both populations of neurons and the terminal growth and branching of their axons in the tissues they innervate is regulated by the supply of nerve growth factor (NGF) produced by these tissues. NGF is derived by proteolytic cleavage of a large precursor protein, proNGF, which is recognised to possess distinctive biological functions. Here, we show that proNGF promotes profuse neurite growth and branching from cultured postnatal mouse SCG neurons. In marked contrast, proNGF does not promote the growth of trigeminal neurites. Studies using compartment cultures demonstrated that proNGF acts locally on SCG neurites to promote growth. The neurite growth-promoting effect of proNGF is not observed in SCG neurons cultured from p75 NTR -deficient mice, and proNGF does not phosphorylate the NGF receptor tyrosine kinase TrkA. These findings suggest that proNGF selectively promotes the growth of neurites from a subset of NGF-responsive neurons by a p75 NTR -dependent mechanism during postnatal development when the axons of these neurons are ramifying within their targets in vivo .
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-25
    Description: Laura Howard, Erin Wosnitzka, Darian Okakpu, Matthew A. White, Sean Wyatt, and Alun M. Davies TWE-PRIL is a naturally occurring fusion protein of components of two TNF superfamily members: the extracellular domain of APRIL; and the intracellular and transmembrane domains of TWEAK with no known function. Here, we show that April –/– mice (which lack APRIL and TWE-PRIL) exhibited overgrowth of sympathetic fibres in vivo , and sympathetic neurons cultured from these mice had significantly longer axons than neurons cultured from wild-type littermates. Enhanced axon growth from sympathetic neurons cultured from April –/– mice was prevented by expressing full-length TWE-PRIL in these neurons but not by treating them with soluble APRIL. Soluble APRIL, however, enhanced axon growth from the sympathetic neurons of wild-type mice. siRNA knockdown of TWE-PRIL but not siRNA knockdown of APRIL alone also enhanced axon growth from wild-type sympathetic neurons. Our work reveals the first and physiologically relevant role for TWE-PRIL and suggests that it mediates reverse signalling.
    Keywords: Neural development
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...