GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Company of Biologists  (2)
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2002
    In:  Journal of Cell Science Vol. 115, No. 2 ( 2002-01-15), p. 433-443
    In: Journal of Cell Science, The Company of Biologists, Vol. 115, No. 2 ( 2002-01-15), p. 433-443
    Abstract: Activation of T lymphocytes requires the engagement of the T-cell receptor and costimulation molecules through cell-to-cell contacts. The tetraspanin CD82 has previously been shown to act as a cytoskeleton-dependent costimulation molecule. We show here that CD82 engagement leads to the tyrosine phosphorylation and association of both the Rho GTPases guanosine exchange factor Vav1 and adapter protein SLP76, suggesting that Rho GTPases participate in CD82 signaling. Indeed, broad inactivation of all Rho GTPases, or a specific blockade of RhoA, Rac1 or Cdc42, inhibited the morphological changes linked to CD82 engagement but failed to modulate the inducible association of CD82 with the actin network. Rho GTPase inactivation, as well as actin depolymerization, reduced the ability of CD82 to phosphorylate Vav and SLP76 and to potentiate the phosphorylation of two early TcR signaling intermediates: the tyrosine kinases ZAP70 and membrane adapter LAT. Taken together, this suggests that an amplification loop, via early Vav and SLP76 phosphorylations and Rho-GTPases activation, is initiated by CD82 association with the cytoskeleton, which permits cytoskeletal rearrangements and costimulatory activity. Moreover, the involvement of CD82 in the formation of the immunological synapse is strongly suggested by its accumulation at the site of TcR engagement. This novel link between a tetraspanin and the Rho GTPase cascade could explain why tetraspanins, which are known to form heterocomplexes, are involved in cell activation, adhesion, growth and metastasis.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2002
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Company of Biologists ; 1999
    In:  Journal of Cell Science Vol. 112, No. 24 ( 1999-12-15), p. 4763-4771
    In: Journal of Cell Science, The Company of Biologists, Vol. 112, No. 24 ( 1999-12-15), p. 4763-4771
    Abstract: The Rho GTPase family, including Rho, Rac and Cdc42 proteins, is implicated in various cell functions requiring the reorganization of actin-based structures. In secretory cells, cytoskeletal rearrangements are a prerequisite for exocytosis. We previously described that, in chromaffin cells, the trimeric granule-bound Go protein controls peripheral actin and prevents exocytosis in resting cells through the regulation of RhoA. To provide further insight into the function of Rho proteins in exocytosis, we focus here on their intracellular distribution in chromaffin cells. By confocal immunofluorescence analysis, we found that Rac1 and Cdc42 are exclusively localized in the subplasmalemmal region in both resting and nicotine-stimulated cells. In contrast, RhoA is associated with the membrane of secretory granules. We then investigated the effects of clostridial toxins, which differentially impair the function of Rho GTPases, on the subplasmalemmal actin network and catecholamine secretion. Clostridium difficiletoxin B, which inactivates Rho, Rac and Cdc42, markedly altered the distribution of peripheral actin filaments. Neither Clostridium botulinumC3 toxin, which selectively ADP-ribosylates Rho, nor Clostridium sordelliilethal toxin, which inactivates Rac, affected cortical actin, suggesting that Cdc42 plays a specific role in the organization of subplasmalemmal actin. Indeed, toxin B strongly reduced secretagogue-evoked catecholamine release. This effect on secretion was not observed in cells having their actin cytoskeleton depolymerized by cytochalasin E or Clostridium botulinumC2 toxin, suggesting that the inhibition of secretion by toxin B is entirely linked to the disorganization of actin. C. sordelliilethal toxin also inhibited catecholamine secretion, but this effect was not related to the actin cytoskeleton as seen in cells pretreated with cytochalasin E or C2 toxin. In contrast, C3 exoenzyme did not affect secretion. We propose that Cdc42 plays an active role in exocytosis by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis.
    Type of Medium: Online Resource
    ISSN: 0021-9533 , 1477-9137
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1999
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...