GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Development, The Company of Biologists, Vol. 140, No. 9 ( 2013-05-01), p. e907-e907
    Type of Medium: Online Resource
    ISSN: 1477-9129 , 0950-1991
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2013
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Company of Biologists ; 2008
    In:  Journal of Cell Science Vol. 121, No. 9 ( 2008-05-01), p. 1547-1558
    In: Journal of Cell Science, The Company of Biologists, Vol. 121, No. 9 ( 2008-05-01), p. 1547-1558
    Abstract: Several meiosis-specific proteins of Schizosaccharomyces pombe play essential roles in meiotic progression. We report here that a novel meiosis-specific protein kinase, Mug27 (also known as Ppk35), is required for proper spore formation. This kinase is expressed by the mug27+ gene, which is abruptly transcribed after horsetail movement. This transcription is maintained until the second meiotic division. Green fluorescent protein (GFP)-tagged Mug27 appears at the start of prometaphase I, localizes to the spindle pole body (SPB) and then translocates to the forespore membrane (FSM) at late anaphase II. In the mug27Δ strain, smaller spores are produced compared with those of the mug27+ strain. Moreover, spore viability was reduced by half or more compared with that of the mug27+ strain. The protein-kinase activity of Mug27 appears to be important for its function: the putative kinase-dead Mug27 mutant had similar phenotypes to mug27Δ. Our results here indicate that the Mug27 kinase localizes at the SPB and regulates FSM formation and sporulation.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2008
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Cell Science, The Company of Biologists, Vol. 126, No. 2 ( 2013-01-15), p. 508-520
    Abstract: The tumor suppressors Lats1 and Lats2 are mediators of the Hippo pathway that regulates tissue growth and proliferation. Their N-terminal non-kinase regions are distinct except for Lats conserved domains 1 and 2 (LCD1 and LCD2), which may be important for Lats1/2-specific functions. Lats1 knockout mice were generated by disrupting the N-terminal region containing LCD1 (Lats1ΔN/ΔN). Some Lats1ΔN/ΔN mice were born safely and grew normally. However, mouse embryonic fibroblasts (MEFs) from Lats1ΔN/ΔN mice displayed mitotic defects, centrosomal overduplication, chromosomal misalignment, multipolar spindle formation, chromosomal bridging and cytokinesis failure. They also showed anchorage-independent growth and continued cell cycles and cell growth, bypassing cell-cell contact inhibition similar to tumor cells. Lats1ΔN/ΔN MEFs produced tumors in nude mice after subcutaneous injection, although the tumor growth rate was much slower than that of ordinary cancer cells. Yap, a key transcriptional coactivator of the Hippo pathway, was overexpressed and stably retained in Lats1ΔN/ΔN MEFs in a cell density independent manner, and Lats2 mRNA expression was downregulated. In conclusion, N-terminally truncated Lats1 induced Lats2 downregulation and Yap protein accumulation, leading to chromosomal instability and tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2013
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Company of Biologists ; 2003
    In:  Journal of Cell Science Vol. 116, No. 13 ( 2003-07-01), p. 2721-2735
    In: Journal of Cell Science, The Company of Biologists, Vol. 116, No. 13 ( 2003-07-01), p. 2721-2735
    Abstract: Using a meiosis-specific subtracted cDNA library of Schizosaccharomyces pombe, we identified meu14+ as a gene whose expression is upregulated during meiosis. Transcription of meu14+ is induced abruptly after the cell enters meiosis. Its transcription is dependent on the meiosis-specific transcription factor Mei4. In meu14Δ cells, the segregation and modification of the SPBs (spindle pole bodies) and microtubule elongation during meiosis II were aberrant. Meiotic meu14Δ cells consequently produced a high frequency of abnormal tetranucleate cells harboring aberrant forespore membranes and failed to produce asci. In wild-type cells harboring the integrated meu14+-gfp fusion gene, Meu14-GFP first appeared inside the nuclear region at prophase II, after which it accumulated beside the two SPBs at metaphase II. Thereafter, it formed two ring-shaped structures that surrounded the nucleus at early anaphase II. At post-anaphase II, it disappeared. Meu14-GFP appears to localize at the border of the forespore membrane that later develops into spore walls at the end of sporulation. This was confirmed by coexpressing Spo3-HA, a component of the forespore membrane, with Meu14-GFP. Taken together, we conclude that meu14+ is crucial in meiosis in that it participates in both the nuclear division during meiosis II and the accurate formation of the forespore membrane.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2003
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Cell Science, The Company of Biologists
    Abstract: Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide sensitive factor (NSF) and its attachment protein, α-SNAP, catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of the fusion event. γ-SNAP is an isoform of SNAP, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates endosomal trafficking of epidermal growth factor receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry revealed that γ-SNAP interacts with limited SNAREs including endosomal ones. γ-SNAP, as well as α-SNAP, mediated disassembly of endosomal syntaxin 7-containing SNARE complexes. Overexpression and small interfering RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in limited organelles including endosomes and their trafficking pathways.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2015
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Cell Science, The Company of Biologists, Vol. 136, No. 15 ( 2023-08-01)
    Abstract: The non-receptor tyrosine kinase SRC is overexpressed and/or hyperactivated in various human cancers, and facilitates cancer progression by promoting invasion and metastasis. However, the mechanisms underlying SRC upregulation are poorly understood. In this study, we demonstrate that transforming growth factor-β (TGF-β) induces SRC expression at the transcriptional level by activating an intragenic the SRC enhancer. In the human breast epithelial cell line MCF10A, TGF-β1 stimulation upregulated one of the SRC promotors, the 1A promoter, resulting in increased SRC mRNA and protein levels. Chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the SMAD complex is recruited to three enhancer regions ∼15 kb upstream and downstream of the SRC promoter, and one of them is capable of activating the SRC promoter in response to TGF-β. JUN, a member of the activator protein (AP)-1 family, localises to the enhancer and regulates TGF-β-induced SRC expression. Furthermore, TGF-β-induced SRC upregulation plays a crucial role in epithelial–mesenchymal transition (EMT)-associated cell migration by activating the SRC–focal adhesion kinase (FAK) circuit. Overall, these results suggest that TGF-β-induced SRC upregulation promotes cancer cell invasion and metastasis in a subset of human malignancies.
    Type of Medium: Online Resource
    ISSN: 0021-9533 , 1477-9137
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2023
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Cell Science, The Company of Biologists, Vol. 118, No. 2 ( 2005-01-15), p. 447-459
    Abstract: We report here that a meiosis-specific gene of Schizosaccharomyces pombe denoted mcp6+ (meiotic coiled-coil protein) encodes a protein that is required for the horsetail movement of chromosomes at meiosis I. The mcp6+ gene is specifically transcribed during the horsetail phase. Green fluorescent protein (GFP)-tagged Mcp6 appears at the start of karyogamy, localizes to the spindle-pole body (SPB) and then disappears before chromosome segregation at meiosis I. In the mcp6Δ strain, the horsetail movement was either hampered (zygotic meiosis) or abolished (azygotic meiosis) and the pairing of homologous chromosomes was impaired. Accordingly, the allelic recombination rates of the mcp6Δ strain were only 10-40% of the wild-type rates. By contrast, the ectopic recombination rate of the mcp6Δ strain was twice the wild-type rate. This is probably caused by abnormal homologous pairing in mcp6Δ cells because of aberrant horsetail movement. Fluorescent microscopy indicates that SPB components such as Sad1, Kms1 and Spo15 localize normally in mcp6Δ cells. Because Taz1 and Swi6 also localized with Sad1 in mcp6Δ cells, Mcp6 is not required for telomere clustering. In a taz1Δ strain, which does not display telomere clustering, and the dhc1-d3 mutant, which lacks horsetail movement, Mcp6 localized with Sad1 normally. However, we observed abnormal astral microtubule organization in mcp6Δ cells. From these results, we conclude that Mcp6 is necessary for neither SPB organization nor telomere clustering, but is required for proper astral microtubule positioning to maintain horsetail movement.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2005
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...