GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Company of Biologists  (2)
Material
Publisher
  • The Company of Biologists  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2001
    In:  Journal of Experimental Biology Vol. 204, No. 22 ( 2001-11-15), p. 3993-4004
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 204, No. 22 ( 2001-11-15), p. 3993-4004
    Abstract: This study investigated physiological and behavioural aspects of diving development in pups of the harbour seal Phoca vitulina. Behavioural data (4280 h, 6027 dives) from time/depth recorders (N=13) deployed on pups aged 0–19 days are presented concomitantly with physiological measurements (N=8, sampled both early and late in the nursing period) of blood oxygen stores and body composition. Pups grew from 12.6±1.8 kg (mean age 2 days, total body fat 16±4 %) to 22.2±2.5 kg (mean age 16 days, total body fat 35±5 %; means ± s.d.) over the duration of the experiment. Pups less than 5 days of age had an elevated haematocrit and reduced plasma volume compared with older pups. Although plasma volume and blood volume increased, mass-specific blood oxygen stores (total haemoglobin) fell during the study period. Simultaneously, the following behavioural indicators of diving ability increased: the proportion of time spent in the water, dive depth, dive duration, bottom time and maximum daily swimming velocity. In addition, the proportion of dives that were identified by cluster analyses as being U-shaped increased significantly with age. On the basis of the measured blood oxygen stores, less than 1 % of the recorded dives exceeded the calculated aerobic dive limit. Thus, development in blood oxygen stores or rates of oxygen consumption did not seem to restrain the rate of neonatal dive development in harbour seals. It appears that behavioural modifications (experience and learning) may be the primary rate-limiting factors for ontogeny of diving skills in neonates of this species.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2001
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Company of Biologists ; 2008
    In:  Journal of Experimental Biology Vol. 211, No. 5 ( 2008-03-01), p. 699-708
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 211, No. 5 ( 2008-03-01), p. 699-708
    Abstract: Feeding kinematics, suction and hydraulic jetting capabilities of bearded seals (Erignathus barbatus) were characterized during controlled feeding trials. Feeding trials were conducted both on land and in water, and allowed a choice between suction and biting, but food was also presented that could be ingested by suction alone. Four feeding phases, preparatory, jaw opening, hyoid depression and jaw closing were observed; the mean feeding cycle duration was 0.54±0.22 s, regardless of feeding mode(P & gt;0.05). Subjects feeding on land used biting and suction 89.3%and 10.7% of the time, respectively. Subjects feeding in water used suction and hydraulic jetting 96.3% and 3.7% of the time, respectively. No biting behavior was observed underwater. Suction feeding was characterized by a small gape (2.7±0.85 cm), small gape angle (24.4±8.13°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by large gape(7.3±2.2 cm), large gape angle (41.7±15.2°), and lip curling to expose the teeth. An excavation behavior in which suction and hydraulic jetting were alternated was used to extract food from recessed wells. The maximum subambient and suprambient pressures recorded were 91.2 and 53.4 kPa,respectively. The inclusion of suction data for phocids broadens the principle that suction feeding kinematics is conserved among aquatic vertebrates. Furthermore, bearded seals support predictions that mouth size, fluid flow speed, and elusiveness of prey consumed are among a suite of traits that determine the specific nature of suction feeding among species.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2008
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...