GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-14
    Description: ABCG2 encodes the mitoxantrone resistance protein (MXR; breast cancer resistance protein), an ATP-binding cassette (ABC) efflux membrane transporter. Computational analysis of the ~300 kb region of DNA surrounding ABCG2 (chr4:88911376-89220011, hg19) identified 30 regions with potential cis-regulatory capabilities. These putative regulatory regions were tested for their enhancer and suppressor activity in a human liver cell line using luciferase reporter assays. The in vitro enhancer and suppressor assays identified four regions that decreased gene expression and five regions that increased expression 〉1.6-fold. Four of five human hepatic in vitro enhancers were confirmed as in vivo liver enhancers using the mouse hydrodynamic tail vein injection assay. Two of the in vivo liver enhancers (ABCG2RE1 and ABCG2RE9) responded to 17β-estradiol or rifampin in human cell lines, and ABCG2RE9 had ChIP-seq evidence to support the binding of several transcription factors and the transcriptional coactivator p300 in human hepatocytes. This study identified genomic regions surrounding human ABCG2 that can function as regulatory elements, some with the capacity to alter gene expression upon environmental stimulus. The results from this research will drive future investigations of interindividual variation in ABCG2 expression and function that contribute to differences in drug response.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-18
    Description: Inhibition of thiamine transporters has been proposed as a putative mechanism for the observation of Wernicke’s encephalopathy and subsequent termination of clinical development of fedratinib, a Janus kinase inhibitor (JAKi). This study aimed to determine the potential for other JAKi to inhibit thiamine transport using human epithelial colorectal adenocarcinoma (Caco-2) and thiamine transporter (THTR) overexpressing cells and to better elucidate the structural basis for interacting with THTR. Only JAKi containing a 2,4-diaminopyrimidine were observed to inhibit thiamine transporters. Fedratinib inhibited thiamine uptake into Caco-2 cells (IC 50 = 0.940 µ M) and THTR-2 (IC 50 = 1.36 µ M) and, to a lesser extent, THTR-1 (IC 50 = 7.10 µ M) overexpressing cells. Two other JAKi containing this moiety, AZD1480 and cerdulatinib, were weaker inhibitors of the thiamine transporters. Other JAKi—including monoaminopyrimidines, such as momelotinib, and nonaminopyrimidines, such as filgotinib—did not have any inhibitory effects on thiamine transport. A pharmacophore model derived from the minimized structure of thiamine suggests that 2,4-diaminopyrimidine–containing compounds can adopt a conformation matching several key features of thiamine. Further studies with drugs containing a 2,4-diaminopyrimidine resulted in the discovery that the antibiotic trimethoprim also potently inhibits thiamine uptake mediated by THTR-1 (IC 50 = 6.84 µ M) and THTR-2 (IC 50 = 5.56 µ M). Fedratinib and trimethoprim were also found to be substrates for THTR, a finding with important implications for their disposition in the body. In summary, our results show that not all JAKi have the potential to inhibit thiamine transport and further establish the interaction of these transporters with xenobiotics.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-24
    Description: Metformin, the most widely prescribed antidiabetic drug, requires transporters to enter tissues involved in its pharmacologic action, including liver, kidney, and peripheral tissues. Organic cation transporter 3 (OCT3, SLC22A3 ), expressed ubiquitously, transports metformin, but its in vivo role in metformin response is not known. Using Oct3 knockout mice, the role of the transporter in metformin pharmacokinetics and pharmacodynamics was determined. After an intravenous dose of metformin, a 2-fold decrease in the apparent volume of distribution and clearance was observed in knockout compared with wild-type mice ( P 〈 0.001), indicating an important role of OCT3 in tissue distribution and elimination of the drug. After oral doses, a significantly lower bioavailability was observed in knockout compared with wild-type mice (0.27 versus 0.58, P 〈 0.001). Importantly, metformin’s effect on the plasma glucose concentration-time curve was reduced in knockout compared with wild-type mice (12 versus 30% reduction, respectively, P 〈 0.05) along with its accumulation in skeletal muscle and adipose tissue ( P 〈 0.05). Furthermore, the effect of metformin on phosphorylation of AMP activated protein kinase, and expression of glucose transporter type 4 was absent in the adipose tissue of Oct3 –/– mice. Additional analysis revealed that an OCT3 3' untranslated region variant was associated with reduced activity in luciferase assays and reduced response to metformin in 57 healthy volunteers. These findings suggest that OCT3 plays an important role in the absorption and elimination of metformin and that the transporter is a critical determinant of metformin bioavailability, clearance, and pharmacologic action.
    Print ISSN: 0026-895X
    Electronic ISSN: 1521-0111
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...