GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Society for Microbiology (ASM)  (1)
Document type
Years
  • 1
    Publication Date: 2016-08-23
    Description: As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo . MIC values against Streptococcus pneumoniae , Streptococcus pyogenes , Staphylococcus aureus , and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae -induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...