GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-19
    Description: The efficiency of direct steam injection (DSI) at 105°C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis . We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis . Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log 10 was achieved with DSI, and a minimum reduction of 5.7 log 10 was found with M. smegmatis . The minimum log 10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a 〉7-fold-log 10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. IMPORTANCE M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula. In light of this, it is appropriate to evaluate existing mitigation measures to inactivate M. avium subsp. paratuberculosis in dairy products. The work conducted in this study describes the efficacy of direct steam injection, a thermal process commonly used in the dairy industry, to eliminate M. avium subsp. paratuberculosis and a surrogate bacterium in milk, thus ensuring the absence of M. avium subsp. paratuberculosis in dairy products subject to these process conditions.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-11
    Description: In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that the C. difficile 630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its role in vivo and in vitro through the creation of an isogenic ClosTron-based htrA mutant of C. difficile strain 630 erm (wild type). In contrast to the attenuated phenotype seen with htrA deletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acute C. difficile infection. Microarray data analysis showed a pleiotropic effect of htrA on the transcriptome of C. difficile , including upregulation of the toxin A gene. In addition, the htrA mutant showed reduced spore formation and adherence to colonic cells. Together, our data show that htrA can modulate virulence in C. difficile .
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...