GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Society for Microbiology (ASM)  (3)
  • 1
    Publication Date: 2016-07-16
    Description: Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and –3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO 3 3– ) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the enzymatic activity associated with P release in soil and sediment. Our results revealed that soil and sediment bacteria can break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Even genetically related bacterial isolates exhibited different preferences for molecules, such as DNA, calcium phosphate, phosphite, and phosphonates, as substrates to obtain P, evidencing a distribution of roles for P utilization and suggesting a dynamic movement of P utilization traits among bacteria in microbial communities.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-15
    Description: The nitroheterocycle nifurtimox, as part of a nifurtimox-eflornithine combination therapy, represents one of a limited number of treatments targeting Trypanosoma brucei , the causative agent of human African trypanosomiasis. The mode of action of this prodrug involves an initial activation reaction catalyzed by a type I nitroreductase (NTR), an enzyme found predominantly in prokaryotes, leading to the formation of a cytotoxic unsaturated open-chain nitrile metabolite. Here, we evaluate the trypanocidal activities of a library of other 5-nitrofurans against the bloodstream form of T. brucei as a preliminary step in the identification of additional nitroaromatic compounds that can potentially partner with eflornithine. Biochemical screening against the purified enzyme revealed that all 5-nitrofurans were effective substrates for T. brucei NTR (TbNTR), with the preferred compounds having apparent k cat / K m values approximately 50-fold greater than those of nifurtimox. For several compounds, in vitro reduction by this nitroreductase yielded products characterized by mass spectrometry as either unsaturated or saturated open-chain nitriles. When tested against the bloodstream form of T. brucei , many of the derivatives displayed significant growth-inhibitory properties, with the most potent compounds generating 50% inhibitory concentrations (IC 50 s) around 200 nM. The antiparasitic activities of the most potent agents were demonstrated to be NTR dependent, as parasites having reduced levels of the enzyme displayed resistance to the compounds, while parasites overexpressing TbNTR showed hypersensitivity. We conclude that other members of the 5-nitrofuran class of nitroheterocycles have the potential to treat human African trypanosomiasis, perhaps as an alternative partner prodrug to nifurtimox, in the next generation of eflornithine-based combinational therapies.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-12
    Description: Although the parasitic infection Chagas' disease was described over 100 years ago, even now there are not suitable drugs. The available drugs nifurtimox and benznidazole have limited efficacies and tolerances, with proven mutagenic effects. Attempting to find appropriate drugs to deal with this problem, here we report on the development and pharmacological characterization of new amide-containing thiazoles. In the present study, we evaluated the in vitro and in vivo effects of new candidates against Trypanosoma cruzi , the etiological agent of Chagas' disease. The lead amide-containing thiazole derivative had potent in vitro activity, an absence of both in vitro mutagenic and in vivo clastogenic effects, and excellent in vitro selectivity and in vivo tolerance. The compound suppressed parasitemia in mice, modifying the anti- T. cruzi antibodies like the reference drug, benznidazole, and displayed the lowest mortality among the tested drugs. The present evidence suggests that this compound is a promising anti- T. cruzi agent surpassing the lead optimization stage in drug development and leading to a candidate for preclinical study.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...