GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-24
    Description: V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA-PKcs deficiency leads to a nearly complete block in coding join formation, as DNA-PKcs is required to activate Artemis, the endonuclease that opens hairpin-sealed coding ends. In contrast to loss of DNA-PKcs protein, here we show that inhibition of DNA-PKcs kinase activity has no effect on coding join formation when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA-PKcs. Mutation of these threonine residues to alanine (DNA-PKcs 3A ) renders DNA-PKcs dependent on its intrinsic kinase activity during coding end joining, at a step downstream of opening hairpin-sealed coding ends. Thus, DNA-PKcs has critical functions in coding end joining beyond promoting Artemis endonuclease activity, and these functions can be regulated redundantly by the kinase activity of either ATM or DNA-PKcs.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-08
    Description: The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24 Gag production was unaffected, but virion release (measured as extracellular p24 Gag ) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. IMPORTANCE New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of SM111 and similar compounds may allow more detailed pharmacological studies of HIV-1 egress and provide opportunities to develop new treatments for HIV-1.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-11
    Description: Follicular regulatory T (TFR) cells are a subset of CD4 + T cells in secondary lymphoid follicles. TFR cells were previously included in the follicular helper T (TFH) cell subset, which consists of cells that are highly permissive to HIV-1. The permissivity of TFR cells to HIV-1 is unknown. We find that TFR cells are more permissive than TFH cells to R5-tropic HIV-1 ex vivo . TFR cells expressed more CCR5 and CD4 and supported higher frequencies of viral fusion. Differences in Ki67 expression correlated with HIV-1 replication. Inhibiting cellular proliferation reduced Ki67 expression and HIV-1 replication. Lymph node cells from untreated HIV-infected individuals revealed that TFR cells harbored the highest concentrations of HIV-1 RNA and highest levels of Ki67 expression. These data demonstrate that TFR cells are highly permissive to R5-tropic HIV-1 both ex vivo and in vivo . This is likely related to elevated CCR5 levels combined with a heightened proliferative state and suggests that TFR cells contribute to persistent R5-tropic HIV-1 replication in vivo . IMPORTANCE In chronic, untreated HIV-1 infection, viral replication is concentrated in secondary lymphoid follicles. Within secondary lymphoid follicles, follicular helper T (TFH) cells have previously been shown to be highly permissive to HIV-1. Recently, another subset of T cells in secondary lymphoid follicles was described, follicular regulatory T (TFR) cells. These cells share some phenotypic characteristics with TFH cells, and studies that showed that TFH cells are highly permissive to HIV-1 included TFR cells in their definition of TFH cells. The permissivity of TFR cells to HIV-1 has not previously been described. Here, we show that TFR cells are highly permissive to HIV-1 both ex vivo and in vivo . The expression of Ki67, a marker of proliferative capacity, is predictive of expression of viral proteins, and downregulating Ki67 leads to concurrent decreases in expression of viral proteins. Our study provides new insight into HIV-1 replication and a potential new cell type to target for future treatment.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-13
    Description: To identify and characterize surface proteins expressed by the relapsing fever (RF) agent Borrelia hermsii in the blood of infected mice, we used a cell-free filtrate of their blood to immunize congenic naive mice. The resultant antiserum was used for Western blotting of cell lysates, and gel slices corresponding to reactive bands were subjected to liquid chromatography-tandem mass spectrometry, followed by a search of the proteome database with the peptides. One of the immunogens was identified as the BHA007 protein, which is encoded by a 174-kb linear plasmid. BHA007 had sequence features of lipoproteins, was surface exposed by the criteria of in situ protease susceptibility and agglutination of Vtp – cells by anti-BHA007 antibodies, and was not essential for in vitro growth. BHA007 elicited antibodies during experimental infection of mice, but immunization with recombinant protein did not confer protection against needle-delivered infection. Open reading frames (ORFs) orthologous to BHA007 were found on large plasmids of other RF species, including the coding sequences for the CihC proteins of Borrelia duttonii and B. recurrentis , but not in Lyme disease Borrelia species. Recombinant BHA007 bound both human and bovine fibronectin with K d (dissociation constant) values of 22 and 33 nM, respectively, and bound to C4-binding protein with less affinity. The distant homology of BHA007 and its orthologs to BBK32 proteins of Lyme disease species, as well as to previously described BBK32-like proteins in relapsing fever species, indicates that BHA007 is a member of a large family of multifunctional proteins in Borrelia species that bind to fibronectin as well as other host proteins.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-21
    Description: DNA-dependent protein kinase (DNA-PK) orchestrates DNA repair by regulating access to breaks through autophosphorylations within two clusters of sites (ABCDE and PQR). Blocking ABCDE phosphorylation (by alanine mutation) imparts a dominant negative effect, rendering cells hypersensitive to agents that cause DNA double-strand breaks. Here, a mutational approach is used to address the mechanistic basis of this dominant negative effect. Blocking ABCDE phosphorylation hypersensitizes cells to most types of DNA damage (base damage, cross-links, breaks, and damage induced by replication stress), suggesting that DNA-PK binds DNA ends that result from many DNA lesions and that blocking ABCDE phosphorylation sequesters these DNA ends from other repair pathways. This dominant negative effect requires DNA-PK's catalytic activity, as well as phosphorylation of multiple (non-ABCDE) DNA-PK catalytic subunit (DNA-PKcs) sites. PSIPRED analysis indicates that the ABCDE sites are located in the only contiguous extended region of this huge protein that is predicted to be disordered, suggesting a regulatory role(s) and perhaps explaining the large impact ABCDE phosphorylation has on the enzyme's function. Moreover, additional sites in this disordered region contribute to the ABCDE cluster. These data, coupled with recent structural data, suggest a model whereby early phosphorylations promote initiation of nonhomologous end joining (NHEJ), whereas ABCDE phosphorylations, potentially located in a "hinge" region between the two domains, lead to regulated conformational changes that initially promote NHEJ and eventually disengage NHEJ.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-13
    Description: Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa , including multidrug-resistant strains, in a rapid and efficient (~5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to 〉4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-23
    Description: Ceftolozane-tazobactam (C/T) and ceftazidime-avibactam (CZA) MICs were evaluated for a collection of 309 beta-lactam-resistant isolates of Pseudomonas aeruginosa recovered from three institutions in the area of Los Angeles, CA. Overall, 12.0% of isolates were susceptible to imipenem, 15.9% were susceptible to meropenem, 20.7% were susceptible to piperacillin-tazobactam, 24.6% were susceptible to ceftazidime, 25.9% were susceptible to cefepime, 72.5% were susceptible to C/T, and 61.8% were susceptible to CZA. Among C/T-resistant isolates, 9.1% were CZA susceptible, whereas 36.4% of CZA-resistant isolates were susceptible to C/T.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-19
    Description: The plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286, isolated from the nodules of Robinia pseudoacacia growing in zinc-lead mine tailings, both displayed high metal resistance and enhanced the growth of Robinia plants in a metal-contaminated environment. Our goal was to determine whether bacterial metal resistance or the capacity to produce phytohormones had a larger impact on the growth of host plants under zinc stress. Eight zinc-sensitive mutants and one zinc-sensitive mutant with reduced indole-3-acetic acid (IAA) production were obtained by transposon mutagenesis. Analysis of the genome sequence and of transcription via reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that ZntA-4200 and the transcriptional regulator ZntR1 played important roles in the zinc homeostasis of A. tumefaciens CCNWGS0286. In addition, interruption of a putative oligoketide cyclase/lipid transport protein reduced IAA synthesis and also showed reduced zinc and cadmium resistance but had no influence on copper resistance. In greenhouse studies, R. pseudoacacia inoculated with A. tumefaciens CCNWGS0286 displayed a significant increase in biomass production over that without inoculation, even in a zinc-contaminated environment. Interestingly, the differences in plant biomass improvement among A. tumefaciens CCNWGS0286, A. tumefaciens C58, and zinc-sensitive mutants 12-2 ( zntA ::Tn 5 ) and 15-6 (low IAA production) revealed that phytohormones, rather than genes encoding zinc resistance determinants, were the dominant factor in enhancing plant growth in contaminated soil.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-13
    Description: Oxidative stress causes mitochondrial dysfunction and heart failure through unknown mechanisms. Cardiolipin (CL), a mitochondrial membrane phospholipid required for oxidative phosphorylation, plays a pivotal role in cardiac function. The onset of age-related heart diseases is characterized by aberrant CL acyl composition that is highly sensitive to oxidative damage, leading to CL peroxidation and mitochondrial dysfunction. Here we report a key role of ALCAT1, a lysocardiolipin acyltransferase that catalyzes the synthesis of CL with a high peroxidation index, in mitochondrial dysfunction associated with hypertrophic cardiomyopathy. We show that ALCAT1 expression was potently upregulated by the onset of hyperthyroid cardiomyopathy, leading to oxidative stress and mitochondrial dysfunction. Accordingly, overexpression of ALCAT1 in H9c2 cardiac cells caused severe oxidative stress, lipid peroxidation, and mitochondrial DNA (mtDNA) depletion. Conversely, ablation of ALCAT1 prevented the onset of T4-induced cardiomyopathy and cardiac dysfunction. ALCAT1 deficiency also mitigated oxidative stress, insulin resistance, and mitochondrial dysfunction by improving mitochondrial quality control through upregulation of PINK1, a mitochondrial GTPase required for mitochondrial autophagy. Together, these findings implicate a key role of ALCAT1 as the missing link between oxidative stress and mitochondrial dysfunction in the etiology of age-related heart diseases.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-26
    Description: Dengue virus (DENV) is an important human pathogen, especially in the tropical and subtropical parts of the world, causing considerable morbidity and mortality. DENV replication occurs in the cytoplasm; however, a high proportion of nonstructural protein 5 (NS5), containing methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities, accumulates in the nuclei of infected cells. The present study investigates the impact of nuclear localization of NS5 on its known functions, including viral RNA replication and subversion of the type I interferon response. By using a mutation analysis approach, we identified the most critical residues within the αβ nuclear localization signal (αβNLS), which are essential for the nuclear accumulation of this protein. Although we observed an overall correlation between reduced nuclear accumulation of NS5 and impaired RNA replication, we identified one mutant with drastically reduced amounts of nuclear NS5 and virtually unaffected RNA replication, arguing that nuclear localization of NS5 does not correlate strictly with DENV replication, at least in cell culture. Because NS5 plays an important role in blocking interferon signaling via STAT-2 (signal transducer and activator of transcription 2) degradation, the abilities of the NLS mutants to block this pathway were investigated. All mutants were able to degrade STAT-2, with accordingly similar type I interferon resistance phenotypes. Since the NLS is contained within the RdRp domain, the MTase and RdRp activities of the mutants were determined by using recombinant full-length NS5. We found that the C-terminal region of the αβNLS is a critical functional element of the RdRp domain required for polymerase activity. These results indicate that efficient DENV RNA replication requires only minimal, if any, nuclear NS5, and they identify the αβNLS as a structural element required for proper RdRp activity.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...