GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-01
    Description: Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (〉200 nt) from the intergenic regions of annotated protein-coding genes. We report here that the lincRNA gene lincRNA-Tnfaip3 , located at mouse chromosome 10 proximal to the tumor necrosis factor α-induced protein 3 ( Tnfaip3 ) gene, is an early-primary response gene controlled by nuclear factor-B (NF-B) signaling in murine macrophages. Functionally, lincRNA- Tnfaip3 appears to mediate both the activation and repression of distinct classes of inflammatory genes in macrophages. Specifically, induction of lincRNA-Tnfaip3 is required for the transactivation of NF-B-regulated inflammatory genes in response to bacterial LPSs stimulation. LincRNA-Tnfaip3 physically interacts with the high-mobility group box 1 (Hmgb1), assembling a NF-B/Hmgb1/lincRNA-Tnfaip3 complex in macrophages after LPS stimulation. This resultant NF-B/Hmgb1/lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modifications and, ultimately, transactivation of inflammatory genes in mouse macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-B-induced lincRNA-Tnfaip3 to act as a coactivator of NF-B for the transcription of inflammatory genes in innate immune cells through modulation of epigenetic chromatin remodeling.—Ma, S., Ming, Z., Gong, A.-Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., Chen, X.-M. A long noncoding RNA, LincRNA-Tnfaip3, acts as a coregulator of NF-B to modulate inflammatory gene transcription in mouse macrophages.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-22
    Description: Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans -2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmB Ea -RsmA Ea system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora . In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-11
    Description: Clostridium difficile is a spore-forming bacillus that produces toxin-mediated enteric disease. C. difficile expresses two major virulence factors, toxin A (TcdA) and toxin B (TcdB). Human and animal studies demonstrate a clear association between humoral immunity to these toxins and protection against C. difficile infection (CDI). The receptor binding-domains (RBDs) of TcdA and TcdB are known to be immunogenic. Here, we tested the immunoadjuvant properties of Salmonella enterica serovar Typhimurium flagellin (FliC) subunit D1 as an innate immune agonist expressed as a recombinant fusion vaccine targeting the RBDs of TcdA and TcdB in mice. Intraperitoneally immunized mice developed prominent anti-TcdA and anti-TcdB immunoglobulin G in serum. The protective efficacy of the recombinant vaccines, with or without an adjuvant, was tested in a mouse model of CDI that closely represents the human disease. Following intraperitoneal immunization equivalent to two doses of toxoid A and toxoid B vaccine adjuvanted with alum and oral challenge with C. difficile VPI 10463, C57BL/6 mice were able to mount a protective immune response that prevented diarrhea and death compared to mice immunzed with alum alone. These results are significantly different from those for control mice ( P 〈 0.001). These results provide evidence that a recombinant protein-based vaccine targeting the RBDs of the C. difficile toxins adjuvanted with S . Typhimurium flagellin can induce rapid, high-level protection in a mouse model of CDI when challenged with the homologous strain from which the vaccine antigens were derived and warrant further preclinical testing against clinically relevant C. difficile strains in the mouse and hamster models of CDI.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-12
    Description: Clostridium difficile infection (CDI) is a common and debilitating nosocomial infection with high morbidity and mortality. C. difficile mediates diarrhea and colitis by releasing two toxins, toxin A and toxin B. Since both toxins stimulate proinflammatory signaling pathways in human colonocytes and both are involved in the pathophysiology of CDI, neutralization of toxin A and B activities may represent an important therapeutic approach against CDI. Recent studies indicated that human monoclonal antibodies (MAbs) against toxins A and B reduce their cytotoxic and secretory activities and prevent CDI in hamsters. Moreover, anti-toxin A and anti-toxin B MAbs together with antibiotics also effectively reduced recurrent CDI in humans. However, whether these MAbs neutralize toxin A- and toxin B-associated immune responses in human colonic mucosa or human peripheral blood monocyte cells (PBMCs) has never been examined. We used fresh human colonic biopsy specimens and peripheral blood monocytes to evaluate the effects of these antibodies against toxin A- and B-associated cytokine release, proinflammatory signaling, and histologic damage. Incubation of anti-toxin A (MK3415) or anti-toxin B (MK6072) MAbs with human PBMCs significantly inhibited toxin A- and toxin B-mediated tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) expression. MK3415 and MK6072 also diminished toxin A- and toxin B-mediated NF-B p65 phosphorylation in human monocytes, respectively, and significantly reduced toxin A- and B-induced TNF-α and IL-1β expression as well as histologic damage in human colonic explants. Our results underline the effectiveness of MK3415 and MK6072 in blocking C. difficile toxin A- and toxin B-mediated inflammatory responses and histologic damage.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-31
    Description: This study aimed to test the hypothesis that the brain of Protopterus annectens expressed l -gulono--lactone oxidase ( gulo /Gulo), the enzyme catalyzing the last step of ascorbate biosynthesis, and could maintain high concentrations of ascorbate during estivation. We cloned and sequenced gulo from the kidney of P. annectens and performed quantitative PCR to determine its mRNA expression in kidney and brain. Gulo activity was assayed and its protein abundance was determined by Western blot using custom-made anti-Gulo antibody. Effects of estivation on concentrations of ascorbate and dehydroascorbate in the kidney and brain were also determined. Both brain and kidney, but not liver, of P. annectens expressed gulo /Gulo. Desiccation induced P. annectens to estivate, and 6 mo of estivation led to drastic decreases in gulo /Gulo expression and ascorbate concentration in the kidney. However, high concentrations of ascorbate and ascorbate + dehydroascorbate were maintained in the brain during estivation, probably resulting from in situ ascorbate synthesis. Control fish were placed in freshwater, where they were fully active in a favorable environment unlike estivation on land. The ability to synthesize ascorbate to ameliorate oxidative stress directly in the brain might contribute to the ability of P. annectens to undergo prolonged estivation on land.—Ching, B., Ong, J. L. Y., Chng, Y. R., Chen, X. L., Wong, W. P., Chew, S. F., Ip, Y. K. l -gulono--lactone oxidase expression and vitamin C synthesis in the brain and kidney of the African lungfish, Protopterus annectens.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-09
    Description: While cyclosporine (CsA) inhibits calcineurin and is highly effective in prolonging rejection for transplantation patients, the immunological mechanisms remain unknown. Herein, the role of calcineurin signaling was investigated in a mouse allogeneic skin transplantation model. The calcineurin inhibitor CsA significantly ameliorated allograft rejection. In CsA-treated allograft recipient mice, CD11b + Gr1 + myeloid-derived suppressor cells (MDSCs) were functional suppressive immune modulators that resulted in fewer gamma interferon (IFN-)-producing CD8 + T cells and CD4 + T cells (T H 1 T helper cells) and more interleukin 4 (IL-4)-producing CD4 + T cells (T H 2) and prolonged allogeneic skin graft survival. Importantly, the expression of NFATc1 is significantly diminished in the CsA-induced MDSCs. Blocking NFAT (nuclear factor of activated T cells) with VIVIT phenocopied the CsA effects in MDSCs and increased the suppressive activities and recruitment of CD11b + Gr1 + MDSCs in allograft recipient mice. Mechanistically, CsA treatment enhanced the expression of indoleamine 2,3-dioxygenase (IDO) and the suppressive activities of MDSCs in allograft recipients. Inhibition of IDO nearly completely recovered the increased MDSC suppressive activities and the effects on T cell differentiation. The results of this study indicate that MDSCs are an essential component in controlling allograft survival following CsA or VIVIT treatment, validating the calcineurin-NFAT-IDO signaling axis as a potential therapeutic target in transplantation.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-28
    Description: Xylanases are crucial for lignocellulosic biomass deconstruction and generally contain noncatalytic carbohydrate-binding modules (CBMs) accessing recalcitrant polymers. Understanding how multimodular enzymes assemble can benefit protein engineering by aiming at accommodating various environmental conditions. Two multimodular xylanases, XynA and XynB, which belong to glycoside hydrolase families 11 (GH11) and GH10, respectively, have been identified from Caldicellulosiruptor sp. strain F32. In this study, both xylanases and their truncated mutants were overexpressed in Escherichia coli , purified, and characterized. GH11 XynATM1 lacking CBM exhibited a considerable improvement in specific activity (215.8 U nmol –1 versus 94.7 U nmol –1 ) and thermal stability (half-life of 48 h versus 5.5 h at 75°C) compared with those of XynA. However, GH10 XynB showed higher enzyme activity and thermostability than its truncated mutant without CBM. Site-directed mutagenesis of N-terminal amino acids resulted in a mutant, XynATM1-M, with 50% residual activity improvement at 75°C for 48 h, revealing that the disordered region influenced protein thermostability negatively. The thermal stability of both xylanases and their truncated mutants were consistent with their melting temperature ( T m ), which was determined by using differential scanning calorimetry. Through homology modeling and cross-linking analysis, we demonstrated that for XynB, the resistance against thermoinactivation generally was enhanced through improving both domain properties and interdomain interactions, whereas for XynA, no interdomain interactions were observed. Optimized intramolecular interactions can accelerate thermostability, which provided microbes a powerful evolutionary strategy to assemble catalysts that are adapted to various ecological conditions.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-01
    Description: Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro . However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo . We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb ( P 〈 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-25
    Description: Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro , and YAP conferred castration resistance in vivo . Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase–ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-17
    Description: Three hybrid CTX-M β-lactamases, CTX-M-64, CTX-M-123, and CTX-M-132, with N and C termini matching CTX-M-1 group enzymes and centers matching CTX-M-9 group enzymes, have been identified. The hybrid gene sequences suggested recombination between bla CTX-M-15 and bla CTX-M-14 , the two most common bla CTX-M variants worldwide. However, bla CTX-M-64 and bla CTX-M-123 are found in an IS Ecp1-bla CTX-M transposition unit with a 45-bp "spacer," rather than the 48 bp usually associated with bla CTX-M-15 , and 112 bp of IncA/C plasmid backbone. This is closer to the context of bla CTX-M-55 , which has one nucleotide difference from bla CTX-M-15 , on IncI2 plasmid pHN1122-1. Here, we characterized an IncI2 plasmid carrying bla CTX-M-15 with a 45-bp spacer (pHNY2-1) by complete sequencing and also sequenced IncI2 plasmids carrying bla CTX-M-64 (pHNAH46-1) or bla CTX-M-132 (pHNLDH19) and an IncI1 plasmid carrying bla CTX-M-123 (pHNAH4-1). pHNY2-1 has the same IS Ecp1-bla CTX-M -IncA/C insertion as pHN1122-1, pHNAH46-1, and pHNLDH19, and all four plasmid backbones are almost identical. pHNAH4-1 (IncI1 sequence type 108 [ST108]) carries a transposition unit that includes a 2,720-bp fragment of the IncI2 backbone, suggesting IS Ecp1 -mediated transfer of bla CTX-M -IncA/C-IncI2 to an IncI1 plasmid. All three hybrid bla CTX-M genes may have resulted from recombination between bla CTX-M-14 and bla CTX-M-15 with a 45-bp spacer on an IncI2 plasmid. Five additional Escherichia coli isolates of different sequence types from different provinces, farms, and/or animals had bla CTX-M-64 on a pHNAH46-1-like IncI2 plasmid and 9 had bla CTX-M-123 on a pHNAH4-1-like IncI1 ST108 plasmid. Thus, epidemic IncI plasmids may be responsible for the spread of bla CTX-M-64 and bla CTX-M-123 between different animals and different locations in China.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...