GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publication Date: 2015-01-10
    Description: Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publication Date: 2013-10-12
    Description: Adherens junction (AJ) is a specialized cell-cell junction structure that plays a role in mechanically connecting adjacent cells to resist strong contractile forces and to maintain tissue structure, particularly in the epithelium. AJ is mainly comprised of cell adhesion molecules cadherin and nectin and their associating cytoplasmic proteins including β-catenin, α-catenin, p120ctn, and afadin. Our series of studies have revealed that nectin first forms cell-cell adhesion and then recruits cadherin to form AJ. The recruitment of cadherin by nectin is mediated by the binding of α-catenin and p120ctn to afadin. Recent studies showed that PLEKHA7 binds to p120ctn, which is associated with E-cadherin, and maintains the integrity of AJ in epithelial cells. In this study, we showed that PLEKHA7 bound to afadin in addition to p120ctn and was recruited to the nectin-3α-based cell-cell adhesion site in a manner dependent on afadin, but not on p120ctn. The binding of PLEKHA7 to afadin was required for the proper formation of AJ, but not for the formation of tight junction, in EpH4 mouse mammary gland epithelial cells. These results indicate that PLEKHA7 plays a cooperative role with nectin and afadin in the proper formation of AJ in epithelial cells.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-02
    Description: Zinc is essential for the proper functioning of various enzymes and transcription factors, and its homeostasis is rigorously controlled by zinc transporters (SLC39/ZIP, importers; SLC30/ZnT, exporters). Skin disease is commonly caused by a zinc deficiency. Dietary and inherited zinc deficiencies are known to cause alopecia and the development of vesicular or pustular dermatitis. A previous study demonstrated that zinc played crucial roles in the survival of keratinocytes and their unique functions. High levels of zinc have been detected in the epidermis. Epidermal layers are considered to use a mechanism that preferentially takes in zinc, which is involved with the unique functions of keratinocytes. However, few studies have investigated the ZIP (Zrt- and Irt-like protein) proteins specifically expressed in keratinocytes and their functions. We explored the ZIP proteins specifically expressed in the epidermis and analyzed their functions. Gene expression analysis showed that the expression of ZIP2 was consistently higher in the epidermis than in the dermis. Immunohistochemistry analysis confirmed the expression of ZIP2 in differentiating keratinocytes. The expression of ZIP2 was found to be up-regulated by the differentiation induction of cultured keratinocytes. Intracellular zinc levels were decreased in keratinocytes when ZIP2 was knocked down by siRNA, and this subsequently inhibited the differentiation of keratinocytes. Moreover, we demonstrated that ZIP2 knockdown inhibited the normal formation of a three-dimensional cultured epidermis. Taken together, the results of this study suggest that ZIP2, a zinc transporter expressed specifically in the epidermis, and zinc taken up by ZIP2 are necessary for the differentiation of keratinocytes.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...