GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-10-15
    Description: Although multidrug approaches to cancer therapy are common, few strategies are based on rigorous scientific principles. Rather, drug combinations are largely dictated by empirical or clinical parameters. In the present study we developed a strategy for rational design of a regimen that selectively targets human acute myelogenous leukemia (AML) stem cells. As a starting point, we used parthenolide, an agent shown to target critical mechanisms of redox balance in primary AML cells. Next, using proteomic, genomic, and metabolomic methods, we determined that treatment with parthenolide leads to induction of compensatory mechanisms that include up-regulated NADPH production via the pentose phosphate pathway as well as activation of the Nrf2-mediated oxidative stress response pathway. Using this knowledge we identified 2-deoxyglucose and temsirolimus as agents that can be added to a parthenolide regimen as a means to inhibit such compensatory events and thereby further enhance eradication of AML cells. We demonstrate that the parthenolide, 2-deoxyglucose, temsirolimus (termed PDT) regimen is a potent means of targeting AML stem cells but has little to no effect on normal stem cells. Taken together our findings illustrate a comprehensive approach to designing combination anticancer drug regimens.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-24
    Description: The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-01
    Description: The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...