GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-28
    Description: Hypoxia, a ubiquitous feature of tumors, can be exploited by hypoxia-activated prodrugs (HAP) that are substrates for one-electron reduction in the absence of oxygen. NADPH:cytochrome P450 oxidoreductase (POR) is considered one of the major enzymes responsible, based on studies using purified enzyme or forced overexpression in cell lines. To examine the role of POR in HAP activation at endogenous levels of expression, POR knock-outs were generated in HCT116 and SiHa cells by targeted mutation of exon 8 using zinc finger nucleases. Absolute quantitation by proteotypic peptide mass spectrometry of DNA sequence-confirmed multiallelic mutants demonstrated expression of proteins with residual one-electron reductase activity in some clones and identified two (Hko2 from HCT116 and S2ko1 from SiHa) that were functionally null by multiple criteria. Sensitivities of the clones to 11 HAP (six nitroaromatics, three benzotriazine N-oxides, and two quinones) were compared with wild-type and POR-overexpressing cells. All except the quinones were potentiated by POR overexpression. Knocking out POR had a marked effect on antiproliferative activity of the 5-nitroquinoline SN24349 in both genetic backgrounds after anoxic exposure but little or no effect on activity of most other HAP, including the clinical stage 2-nitroimidazole mustard TH-302, dinitrobenzamide mustard PR-104A, and benzotriazine N-oxide SN30000. Clonogenic cell killing and reductive metabolism of PR-104A and SN30000 under anoxia also showed little change in the POR knock-outs. Thus, although POR expression is a potential biomarker of sensitivity to some HAP, identification of other one-electron reductases responsible for HAP activation is needed for their rational clinical development.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-12
    Description: The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-27
    Description: Lipopolysaccharide (LPS) is an important pathological factor involved in serious inflammatory diseases and male reproductive impairments. Emerging evidence demonstrates that antimicrobial peptides possess protective activity in response to LPS-induced inflammation. However, the LPS-binding and/or immunosuppressive activity of β-defensins (DEFBs) has been underestimated. In the present work, we characterized a novel human defensin, DEFB114, which was expressed predominantly in the epididymis and gingival cells at the RNA level. Homogenous recombinant DEFB114 peptides were prepared and characterized using mass spectrometry. DEFB114 protein exhibited a broad spectrum of antimicrobial activity with salt sensitivity against typical pathogenic microbes (i.e. Escherichia coli, Staphylococcus aureus, and Candida albicans). Interestingly, DEFB114 demonstrated novel LPS-binding activity in vitro and inhibited TNF-α release in RAW264.7 cultures through the inhibition of MAPK p42/44 when challenged with LPS. Moreover, DEFB114 could also rescue the LPS-induced reduction of human sperm motility in vitro and protect d-galactosamine-sensitized C57BL/6 mice from LPS-induced lethality in vivo. The protective activity of DEFB114 on RAW264.7, human sperm, and the d-galactosamine-sensitized mice was disulfide bond-dependent because alkylated DEFB114 lost its activity. The low cytotoxicity of the DEFB114 peptide toward human erythrocytes is indicative of its potential therapeutic use in the treatment of LPS-induced inflammation, LPS contamination, and potentially septic shock.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-21
    Description: Chromatin readers decipher the functional readouts of histone modifications by recruiting specific effector complexes for subsequent epigenetic reprogramming. The LSD1 (also known as KDM1A) histone demethylase complex modifies chromatin and represses transcription in part by catalyzing demethylation of dimethylated histone H3 lysine 4 (H3K4me2), a mark for active transcription. However, none of its currently known subunits recognizes methylated histones. The Snai1 family transcription factors are central drivers of epithelial-to-mesenchymal transition (EMT) by which epithelial cells acquire enhanced invasiveness. Snai1-mediated transcriptional repression of epithelial genes depends on its recruitment of the LSD1 complex and ensuing demethylation of H3K4me2 at its target genes. Through biochemical purification, we identified the MBT domain-containing protein SFMBT1 as a novel component of the LSD1 complex associated with Snai1. Unlike other mammalian MBT domain proteins characterized to date that selectively recognize mono- and dimethylated lysines, SFMBT1 binds di- and trimethyl H3K4, both of which are enriched at active promoters. We show that SFMBT1 is essential for Snai1-dependent recruitment of LSD1 to chromatin, demethylation of H3K4me2, transcriptional repression of epithelial markers, and induction of EMT by TGFβ. Carcinogenic metal nickel is a widespread environmental and occupational pollutant. Nickel alters gene expression and induces EMT. We demonstrate the nickel-initiated effects are dependent on LSD1-SFMBT1-mediated chromatin modification. Furthermore, in human cancer, expression of SFMBT1 is associated with mesenchymal markers and unfavorable prognosis. These results highlight a critical role of SFMBT1 in epigenetic regulation, EMT, and cancer.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-14
    Description: HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ∼50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ∼50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced − CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-28
    Description: Tumor suppressor genes are frequently silenced in cancer cells by enzymes catalyzing epigenetic histone modifications. The peptidylarginine deiminase family member PAD4 (also called PADI4) is markedly overexpressed in a majority of human cancers, suggesting that PAD4 is a putative target for cancer treatment. Here, we have generated novel PAD inhibitors with low micromolar IC50 in PAD activity and cancer cell growth inhibition. The lead compound YW3-56 alters the expression of genes controlling the cell cycle and cell death, including SESN2 that encodes an upstream inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Guided by the gene expression profile analyses with YW3-56, we found that PAD4 functions as a corepressor of p53 to regulate SESN2 expression by histone citrullination in cancer cells. Consistent with the mTORC1 inhibition by SESN2, the phosphorylation of its substrates including p70S6 kinase (p70S6K) and 4E-BP1 was decreased. Furthermore, macroautophagy is perturbed after YW3-56 treatment in cancer cells. In a mouse xenograft model, YW3-56 demonstrates cancer growth inhibition activity with little if any detectable adverse effect to vital organs, whereas a combination of PAD4 and histone deacetylase inhibitors further decreases tumor growth. Taken together, our work found that PAD4 regulates the mTORC1 signaling pathway and that PAD inhibitors are potential anticancer reagents that activate tumor suppressor gene expression alone or in combination with histone deacetylase inhibitors.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-30
    Description: Induction of tumor cell apoptosis has been recognized as a valid anticancer strategy. However, therapeutic selectivity between tumor and normal cells has always been a challenge. Here, we report a novel anti-cancer compound methyl 3-(4-nitrophenyl) propiolate (NPP) preferentially induces apoptosis in tumor cells through P450-catalyzed reactive oxygen species (ROS) production. A compound sensitivity study on multiple cell lines shows that tumor cells with high basal ROS levels, low antioxidant capacities, and p53 mutations are especially sensitive to NPP. Knockdown of p53 sensitized non-transformed cells to NPP-induced cell death. Additionally, by comparing NPP with other ROS inducers, we show that the susceptibility of tumor cells to the ROS-induced cell death is influenced by the mode, amount, duration, and perhaps location of ROS production. Our studies not only discovered a unique anticancer drug candidate but also shed new light on the understanding of ROS generation and function and the potential application of a ROS-promoting strategy in cancer treatment.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-09
    Description: Integrins are adhesive, signaling, and mechanotransduction proteins. Talin (Tln) activates integrins and links it to the actin cytoskeleton. Vertebrates contain two talin genes, tln1 and tln2. How Tln1 and Tln2 function in cardiac myocytes (CMs) is unknown. Tln1 and Tln2 expression were evaluated in the normal embryonic and adult mouse heart as well as in control and failing human adult myocardium. Tln1 function was then tested in the basal and mechanically stressed myocardium after cardiomyocyte-specific excision of the Tln1 gene. During embryogenesis, both Tln forms are highly expressed in CMs, but in the mature heart Tln2 becomes the main Tln isoform, localizing to the costameres. Tln1 expression is minimal in the adult CM. With pharmacological and mechanical stress causing hypertrophy, Tln1 is up-regulated in CMs and is specifically detected at costameres, suggesting its importance in the compensatory response to CM stress. In human failing heart, CM Tln1 also increases compared with control samples from normal functioning myocardium. To directly test Tln1 function in CMs, we generated CM-specific Tln1 knock-out mice (Tln1cKO). Tln1cKO mice showed normal basal cardiac structure and function but when subjected to pressure overload showed blunted hypertrophy, less fibrosis, and improved cardiac function versus controls. Acute responses of ERK1/2, p38, Akt, and glycogen synthase kinase 3 after mechanical stress were strongly blunted in Tln1cKO mice. Given these results, we conclude that Tln1 and Tln2 have distinct functions in the myocardium. Our data show that reduction of CM Tln1 expression can lead to improved cardiac remodeling following pressure overload.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publication Date: 2013-06-22
    Description: Uncontrolled, excessive inflammation contributes to the secondary tissue damage of traumatic spinal cord, and HMGB1 is highlighted for initiation of a vicious self-propagating inflammatory circle by release from necrotic cells or immune cells. Several regenerative-competent vertebrates have evolved to circumvent the second damages during the spontaneous spinal cord regeneration with an unknown HMGB1 regulatory mechanism. By genomic surveys, we have revealed that two paralogs of HMGB1 are broadly retained from fish in the phylogeny. However, their spatial-temporal expression and effects, as shown in lowest amniote gecko, were tightly controlled in order that limited inflammation was produced in spontaneous regeneration. Two paralogs from gecko HMGB1 (gHMGB1) yielded distinct injury and infectious responses, with gHMGB1b significantly up-regulated in the injured cord. The intracellular gHMGB1b induced less release of inflammatory cytokines than gHMGB1a in macrophages, and the effects could be shifted by exchanging one amino acid in the inflammatory domain. Both intracellular proteins were able to mediate neuronal programmed apoptosis, which has been indicated to produce negligible inflammatory responses. In vivo studies demonstrated that the extracellular proteins could not trigger a cascade of the inflammatory cytokines in the injured spinal cord. Signal transduction analysis found that gHMGB1 proteins could not bind with cell surface receptors TLR2 and TLR4 to activate inflammatory signaling pathway. However, they were able to interact with the receptor for advanced glycation end products to potentiate oligodendrocyte migration by activation of both NFκB and Rac1/Cdc42 signaling. Our results reveal that HMGB1 does not mediate the inflammatory response in spontaneous spinal cord regeneration, but it promotes CNS regeneration.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-02
    Description: SFMBT1 belongs to the malignant brain tumor domain-containing chromatin reader family that recognizes repressive histone marks and represses transcription. The biological functions and molecular basis underlying SFMBT1-mediated transcriptional repression are poorly elucidated. Here, our proteomic analysis revealed that SFMBT1 is associated with multiple transcriptional corepressor complexes, including CtBP/LSD1/HDAC complexes, polycomb repressive complexes, and malignant brain tumor family proteins, that collectively contribute to SFMBT1 repressor activity. During myogenesis, Sfmbt1 represses myogenic differentiation of cultured and primary myoblasts. Mechanistically, Sfmbt1 interacts with MyoD and mediates epigenetic silencing of MyoD target genes via recruitment of its associated corepressors and subsequent induction of epigenetic modifications and chromatin compaction. Therefore, our study identified novel mechanisms accounting for SFMBT1-mediated transcription repression and revealed an essential role of Sfmbt1 in regulating MyoD-mediated transcriptional silencing that is required for the maintenance of undifferentiated states of myogenic progenitor cells.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...