GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-16
    Description: 1α,25(OH) 2 D 3 , the active form of vitamin D 3 , has been reported to regulate the cell biology of skeletal muscle. However, there has been some controversy about the expression of the vitamin D receptor (VDR) and thus the potential role of vitamin D 3 in skeletal muscle. In this study, we isolated and sequenced the full-length Vdr and Cyp27b1 transcripts in C2C12 myoblasts and myotubes. Western blots and immunocytochemistry confirmed protein expression in both myoblasts and myotubes clearly demonstrating that C2C12 cells express VDR and CYP27B1. To determine the vitamin D 3 action, we found that C2C12 myoblasts treated with either 1α,25(OH) 2 D 3 or 25(OH)D 3 inhibited cell proliferation and this was associated with increased Vdr expression. The observation that treatment of C2C12 myoblasts with the inactive form of vitamin D 3 , [25(OH)D 3 ], inhibited proliferation suggested that CYP27B1 was functionally active. We used small interfering RNA to knock down Cyp27b1 in myoblasts, and cells were treated with 25(OH)D 3 . The growth-suppressive effects of 25(OH)D 3 were abolished, suggesting that CYP27B1 in myoblasts is necessary for the ability of 25(OH)D 3 to affect cell proliferation. Finally, we analyzed expression of VDR and CYP27B1 in regenerating skeletal muscle in vivo. We found that expression of VDR and CYP27B1 increased significantly at day 7 of regeneration, and these results confirm the expression of Vdr and Cyp27b1 in vivo and suggest a potential role for vitamin D 3 in skeletal muscle regeneration following injury.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-16
    Description: The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated 〉20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants ( K t ) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO 2 -biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K t value for MPP. In contrast, the K t value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-16
    Description: The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCS Bmal1 ). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCS Bmal1 –/– ) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCS Bmal1 –/– hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a , which encodes the principle cardiac voltage-gated Na + channel (Na V 1.5), was circadianly expressed in control mouse and rat hearts but not in iCS Bmal1 –/– hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCS Bmal1 –/– hearts was associated with decreased levels of Na V 1.5 and Na + current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a . These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-02
    Description: Obesity-metabolic disorders (ObM) often accompany renal artery stenosis (RAS). We hypothesized that the coexistence of ObM and RAS magnifies inflammation and microvascular remodeling in the stenotic kidney (STK) and aggravates renal scarring. Twenty-eight obesity-prone Ossabaw pigs were studied after 16 wk of a high-fat/high-fructose diet or standard chow including ObM-sham, ObM-RAS, Lean-RAS, or Lean-sham (normal control) groups. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed by multidetector computed tomography (CT), renal oxygenation and tubular transport capability by blood-oxygen-level-dependent MRI, and microcirculation by micro-CT for vessel density, and Western blotting for protein expressions of angiogenic factors (VEGF/FLK-1). Renal vein and inferior vena cava levels of inflammatory cytokines were measured to evaluate systemic and kidney inflammation. Macrophage (MØ) infiltration and subpopulations, fat deposition in the kidney, and inflammation in perirenal and abdominal fat were also examined. GFR and RBF were decreased in Lean-STK but relatively preserved in ObM-STK. However, ObM-STK showed impaired tubular transport function, suppressed microcirculation, and stimulated glomerulosclerosis. ObM diet interacted with RAS to blunt angiogenesis in the STK, facilitated the release of inflammatory cytokines, and led to greater oxidative stress than Lean-STK. The ObM diet also induced fat deposition in the kidney and infiltration of proinflammatory M1-MØ, as also in perirenal and abdominal fat. Coexistence of ObM and RAS amplifies renal inflammation, aggravates microvascular remodeling, and accelerates glomerulosclerosis. Increased adiposity and MØ-accentuated inflammation induced by an ObM diet may contribute to structural injury in the post-STK kidney.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-02
    Description: cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (P o 2 : 25–30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr 853 , which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-02
    Description: Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P -450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-02
    Description: The role(s) of the epidermal growth factor receptor (EGFR) in hepatocytes is unknown. We generated a murine hepatocyte specific-EGFR knockout (KO) model to evaluate how loss of hepatocellular EGFR expression affects processes such as EGF clearance, circulating EGF concentrations, and liver regeneration following 70% resection or CCl 4 -induced centrilobular injury. We were able to disrupt EGFR expression effectively in hepatocytes and showed that the ability of EGF and heregulin (HRG) to phosphorylate EGFR and ERBB3, respectively, required EGFR. Loss of hepatocellular EGFR impaired clearance of exogenous EGF from the portal circulation but paradoxically resulted in reduced circulating levels of endogenous EGF. This was associated with decreased submandibular salivary gland production of EGF. EGFR disruption did not result in increased expression of other ERBB proteins or Met, except in neonatal mice. Liver regeneration following 70% hepatectomy revealed a mild phenotype, with no change in cyclin D1 expression and slight differences in cyclin A expression compared with controls. Peak 5-bromo-2'-deoxyuridine labeling was shifted from 36 to 48 h. Centrilobular damage and regenerative response induced by carbon tetrachloride (CCl 4 ) were identical in the KO and wild-type mice. In contrast, loss of Met increased CCl 4 -induced necrosis and delayed regeneration. Although loss of hepatocellular EGFR alone did not have an effect in this model, EGFR-Met double KOs displayed enhanced necrosis and delayed liver regeneration compared with Met KOs alone. This suggests that EGFR and Met may partially compensate for the loss of the other, although other compensatory mechanisms can be envisioned.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    The American Physiological Society (APS)
    Publication Date: 2015-08-16
    Description: Obesity remains a prominent public health concern. Obesity not only contributes greatly to cardiovascular events but has also been identified to initiate and affect the progression of preexisting chronic kidney disease. The prevalence of renal artery stenosis is growing world-wide, especially in the elderly population and in individuals with atherosclerotic risk factors such as obesity. Prolonged renovascular disease causes inflammation and microvascular remodeling within the post-stenotic kidney, which promote tissue scarring and may account for irreversible renal damage. Obesity has been shown to aggravate kidney damage via several pathways, including exacerbation of microvascular regression and renal cell injury mediated by adipocytes and insulin resistance, thereby worsening the structural and functional outcomes of the kidney in renovascular disease. Dietary modification and inhibition of the renin-angiotensin-aldosterone system have been shown to alleviate obesity-induced tissue injury and remodeling. Possibly, angiogenic factors may boost microvascular repair in the ischemic kidney in the obesity milieu. Novel therapeutic interventions targeting deleterious pathways that are activated by obesity and responsible for kidney damage need to be explored in future studies.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-02
    Description: Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1 ) non-neoplastic Barrett's (BAR-T) cells; 2 ) BAR-T cells with p53 knockdown; and 3 ) BAR-T cells that express oncogenic H-Ras G12V . STAT3CA transformed only the H-Ras G12V -expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras G12V -expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-16
    Description: Lung tissue cells play an active role in the pathogenesis of pulmonary inflammatory diseases by releasing a variety of cytokines and chemokines. However, how lung tissue cells respond to microbial stimuli during pulmonary infections remains unclear. In this study, we found that patients with community-acquired pneumonia displayed increased IL-27 levels in bronchoalveolar lavage fluid and serum. We subsequently examined the immunopathological mechanisms for the activation of primary human lung fibroblasts and bronchial epithelial cells by IL-27. We demonstrated that IL-27 priming enhanced LPS-induced production of IL-6 and IL-8 from lung fibroblasts and bronchial epithelia cells via upregulating Toll-like receptor-4 (TLR4) expression. IL-27 upregulated TLR4 expression in lung fibroblasts through activation of Janus-activated kinase (JAK) and Jun NH 2 -terminal kinase (JNK) signaling pathways, and inhibition of the JAK pathway could partially decrease IL-27-induced TLR4 expression, while inhibition of JNK pathway could completely suppress IL-27-induced TLR4 expression. Our data suggest that IL-27 modulates innate immunity of lung tissue cells through upregulating TLR4 expression during pulmonary infections.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...