GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Physiological Society (APS)  (1)
  • 1
    Publication Date: 2016-10-08
    Description: Hyperhomocysteinemia (HHcy) has been observed to promote hypertension, but the mechanisms are unclear. Toll-like receptor 4 (TLR-4) is a cellular membrane protein that is ubiquitously expressed in all cell types of the vasculature. TLR-4 activation has been known to promote inflammation that has been associated with the pathogenesis of hypertension. In this study we hypothesize that HHcy induces hypertension by TLR-4 activation, which promotes inflammatory cytokine (IL-1β, IL-6, and TNF-α) upregulation and initiation of mitochondria-dependent apoptosis, leading to cell death and chronic vascular inflammation. To test this hypothesis, we used C57BL/6J (WT) mice, cystathionine β-synthase (CBS)-deficient (CBS +/– ) mice with genetic mild HHcy, C3H/HeJ (C3H) mice with TLR-4 mutation, and mice with combined genetic HHcy and TLR-4 mutation (CBS +/– /C3H). Ultrasonography of the superior mesenteric artery (SMA) detected an increase in wall-to-lumen ratio, resistive index (RI), and pulsatility index (PI). Tail cuff blood pressure (BP) measurement revealed elevated BP in CBS +/– mice. RI, PI, and wall-to-lumen ratio of the SMA in CBS +/– /C3H mice were similar to the control group, and BP was significantly alleviated. TLR-4, IL-1β, IL-6, and TNF-α expression were upregulated in the SMA of CBS +/– mice and reduced in the SMA of CBS +/– /C3H mice. Molecules involved in the mitochondria-mediated cell death pathway (BAX, caspase-9, and caspase-3) were upregulated in CBS +/– mice and attenuated in CBS +/– /C3H mice. We conclude that HHcy promotes TLR-4-driven chronic vascular inflammation and mitochondria-mediated cell death, inducing hypertension. TLR-4 mutation attenuates vascular inflammation and cell death, which suppress hypertension.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...