GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-20
    Description: The use of TGF-β–induced CD4 + Foxp3 + T cells (induced regulatory T cells [iTregs]) is an important prevention and treatment strategy in autoimmune diseases and other disorders. However, the potential use of iTregs as a treatment modality for acute graft-versus-host disease (aGVHD) has not been realized because they may be unstable and less suppressive in this disease. We restudied the ability of iTregs to prevent and treat aGVHD in two mouse models. Our results showed that, as long as an appropriate iTreg-generation protocol is used, these iTregs consistently displayed a potent ability to control aGVHD development and reduce mortality in the aGVHD animal models. iTreg infusion markedly suppressed the engraftment of donor CD8 + cells and CD4 + cells, the expression of granzyme A and B, the cytotoxic effect of donor CD8 + cells, and the production of T cell cytokines in aGVHD. Therefore, we conclude that as long as the correct methods for generating iTregs are used, they can prevent and even treat aGVHD.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-20
    Description: Marginal zone macrophages (MZMs) act as a barrier to entry of circulating apoptotic debris into the follicles of secondary lymphoid organs. In autoimmune BXD2 mice, there is a progressive reduction in the function and numbers of MZMs. Absence of MZMs results in retention of apoptotic cell (AC) debris within the marginal zone (MZ) and increased loading of AC Ags on MZ B cells and MZ-precursor (MZ-P) B cells. The MZ-P B cells are capable of translocating the AC Ags to the follicular zone and stimulating T cells. Both MZMs and MZ-P B cells from BXD2 mice express low levels of tolerogenic signals and high levels of inflammatory signals. Thus, the current study suggests a multifaceted mechanism in which MZMs maintain tolerance to apoptotic autoantigens and suppress their translocation to follicles. Lack of clearance of apoptotic debris by MZMs drives follicular Ag–transportation by MZ-P B cells to stimulate an autoimmune response.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-06
    Description: The classical activation of macrophages, one of major innate effector cells, requires IFN- pretreatment (priming) and subsequent TLR stimuli (triggering). The priming effect of IFN- can promote macrophages to secrete higher level of proinflammatory cytokines but lower level of the anti-inflammatory cytokines, enhancing microbicidal and tumoricidal activity of macrophages. However, the underlying molecular mechanisms for IFN-–priming effect on macrophage activation remain to be fully understood. microRNAs (miRNAs) are now emerging as important regulators in immune response, including signaling transduction in immune cell function. In this study, we explored the effect of IFN- on miRNA expression profiling in macrophages and tried to identify the definite miRNA involved in the priming effect of IFN-. We discovered that miR-3473b, which was significantly downregulated after IFN- priming, could attenuate the priming effect of IFN-. miR-3473b promoted Akt/glycogen synthase kinase 3 signaling and IL-10 production through directly targeting phosphatase and tensin homolog (PTEN) to suppress activation of macrophages and inflammatory response. Our data indicate that IFN- beefs up macrophage innate response and cytotoxicity by downregulating miR-3473b to release PTEN from suppression, and then the increase of PTEN contributes to the full activation of IFN-–primed macrophages. Our results provide mechanistic insight to priming effect of IFN- on macrophage classical activation by identifying an IFN-/miR-3473b/PTEN regulatory loop in the regulation of macrophage function.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-17
    Description: BAFF (TNF superfamily [TNFSF] 13B/Blys) and APRIL (TNFSF13) are important regulatory factors for lymphocyte activation and survival in mammals. A BAFF/APRIL-like relative called BAFF- and APRIL-like molecule (BALM) has also been identified in cartilaginous and bony fishes, and we report in this study a BAFF -like gene in lampreys. Our phylogenetic analysis of these genes and a related TNFSF12 gene called TNF-like weak inducer of apoptosis ( TWEAK ) suggest that, whereas an ancestral homolog of BAFF and APRIL was already present in a common ancestor of jawed and jawless vertebrates, TWEAK evolved early on in the jawed vertebrate lineage. Like mammalian BAFF and APRIL , the lamprey BAFF -like gene is expressed in T-like, B-like, and innate immune cells. The predicted protein encoded by this BAFF -like gene in lampreys exhibits higher sequence similarity with mammalian BAFF than APRIL. Correspondingly, we find BAFF orthologs in all of the jawed vertebrate representatives that we examined, although APRIL and/or BALM orthologs are not identifiable in certain jawed vertebrates. For example, BALM is not identifiable in tetrapods, and APRIL is not identifiable in several bony fishes or in birds, the latter of which also lack a TWEAK -like gene. Our analysis further suggests that a hybrid molecule called TWE-PRIL, which is a product of an in-genomic fusion between APRIL and TWEAK genes evolved early in mammalian evolution.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-04
    Description: Viral infection triggers induction of antiviral cytokines and effectors, which are critical mediators of innate antiviral immune response. It has been shown that the processing body–associated protein LSm14A is involved in the induction of antiviral cytokines in cell lines but in vivo evidence is lacking. By generating LSm14A-deficient mice, in this study, we show that LSm14A plays a critical and specific role in the induction of antiviral cytokines in dendritic cells (DCs) but not in macrophages and fibroblasts. Induction of antiviral cytokines triggered by the DNA viruses HSV-1 and murid herpesvirus 68 and the RNA virus vesicular stomatitis virus but not Sendai virus was impaired in Lsm14a –/– DCs, which is correlated to the functions of the adaptor protein MITA/STING in the antiviral signaling pathways. LSm14A deficiency specifically downregulated MITA/STING level in DCs by impairing its nuclear mRNA precursor processing and subsequently impaired antiviral innate and adaptive immune responses. Our findings reveal a nuclear mRNA precursor processing and cell-specific regulatory mechanism of antiviral immune responses.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-08
    Description: Physiological pregnancy requires the maternal immune system to recognize and tolerate embryonic Ags. Although multiple mechanisms have been proposed, it is not yet clear how the fetus evades the maternal immune system. In this article, we demonstrate that trophoblast-derived thymic stromal lymphopoietin (TSLP) instructs decidual CD11c + dendritic cells (dDCs)with increased costimulatory molecules; MHC class II; and Th2/3-type, but not Th1-type, cytokines. TSLP-activated dDCs induce proliferation and differentiation of decidual CD4 + CD25 – T cells into CD4 + CD25 + FOXP3 + regulatory T cells (Tregs) through TGF-β1. TSLP-activated dDC–induced Tregs display immunosuppressive features and express Th2-type cytokines. In addition, decidual CD4 + CD25 + FOXP3 + Tregs promote invasiveness and HLA-G expression of trophoblasts, resulting in preferential production of Th2 cytokines and reduced cytotoxicity in decidual CD56 bright CD16 – NK cells. Of interest, decreased TSLP expression and reduced numbers of Tregs were observed at the maternal–fetal interface during miscarriage. Our study identifies a novel feedback loop between embryo-derived trophoblasts and maternal decidual leukocytes, which induces a tolerogenic immune response to ensure a successful pregnancy.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-10-23
    Description: Genome-wide association studies have recently illuminated that WDFY4 is genetically associated with systemic lupus erythematosus (SLE) susceptibility in various ethnic groups. Despite strong genetic evidence suggesting a role of WDFY4 in SLE pathogenesis, its functional relevance is largely unknown. In this study, we generated Wdfy4 B lymphocyte conditional knockout ( Wdfy4 -CKO) mice and found that loss of Wdfy4 led to a decrease in number of total B cells and several subpopulations of B cells in the periphery and a defect in the transition from the pro– to pre–B cell stage in bone marrow. Also, Wdfy4 -CKO mice showed impaired Ab responses as compared with controls when challenged with Ag. SLE phenotypes were effectively alleviated in Wdfy4 -CKO mice, with significantly diminished pristane-elicited production of autoantibodies and glomerulonephritis. Genetic silencing of WDFY4 in B cells increased lipidation of LC3 independent of p62 and Beclin1, which are essential proteins of canonical autophagy. Our in vivo and in vitro data suggest that WDFY4 facilitates noncanonical autophagic activity. Our findings provide a novel functional link underlying the mechanism of SLE in which WDFY4 influences B cell fate via noncanonical autophagy.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-20
    Description: A balance between Th17 cells and regulatory T cells (Tregs) is important for host immunity and immune tolerance. The underlying molecular mechanisms remain poorly understood. Here we have identified Cdc42 as a central regulator of Th17/Treg balance. Deletion of Cdc42 in T cells enhanced Th17 differentiation but diminished induced Treg differentiation and suppressive function. Treg-specific deletion of Cdc42 decreased natural Tregs but increased effector T cells including Th17 cells. Notably, Cdc42-deficient Th17 cells became pathogenic associated with enhanced glycolysis and Cdc42-deficient Tregs became unstable associated with weakened glycolytic signaling. Inhibition of glycolysis in Cdc42-deficient Th17 cells diminished their pathogenicity and restoration of glycolysis in Cdc42-deficient Tregs rescued their instability. Intriguingly, Cdc42 deficiency in T cells led to exacerbated wasting disease in mouse models of colitis and Treg-specific deletion of Cdc42 caused early, fatal lymphoproliferative diseases. In summary, we show that Cdc42 is a bona fide regulator of peripheral tolerance through suppression of Th17 aberrant differentiation/pathogenicity and promotion of Treg differentiation/stability/function involving metabolic signaling and thus Cdc42 pathway might be harnessed in autoimmune disease therapy.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-10
    Description: Turmeric is traditionally used as a spice and coloring in foods. Curcumin is the primary active ingredient in the turmeric, and compelling evidence has shown that it has the ability to inhibit inflammation. However, the mechanism mediating its anti-inflammatory effects are not fully understood. We report that curcumin inhibited caspase-1 activation and IL-1β secretion through suppressing LPS priming and the inflammasome activation pathway in mouse bone marrow–derived macrophages. The inhibitory effect of curcumin on inflammasome activation was specific to the NLRP3, not to the NLRC4 or the AIM2 inflammasomes. Curcumin inhibited the NLRP3 inflammasome by preventing K + efflux and disturbing the downstream events, including the efficient spatial arrangement of mitochondria, ASC oligomerization, and speckle formation. Reactive oxygen species, autophagy, sirtuin-2, or acetylated α-tubulin was ruled out as the mechanism by which curcumin inhibits the inflammasome. Importantly, in vivo data show that curcumin attenuated IL-1β secretion and prevented high-fat diet–induced insulin resistance in wide-type C57BL/6 mice but not in Nlrp3 -deficient mice. Curcumin also repressed monosodium urate crystal–induced peritoneal inflammation in vivo. Taken together, we identified curcumin as a common NLRP3 inflammasome activation inhibitor. Our findings reveal a mechanism through which curcumin represses inflammation and suggest the potential clinical use of curcumin in NLRP3-driven diseases.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-22
    Description: The genetic association of orosomucoid-like 3 (ORMDL3) with an array of immunoinflammatory disorders has been recently unraveled in multiple ethnic groups, and functional exploration has received attention of the particular relevance of this gene in endoplasmic reticulum stress, lipid metabolism, and inflammatory response. In this study, we demonstrated the upregulation of ORMDL3 in both patients with systemic lupus erythematosus and lupus mice compared with controls. By establishing ORMDL3 knockout mice ( Ormdl3 –/– ), we showed that silencing Ormdl3 in vivo significantly decreased the proportions of mature B lymphocytes and transitional 2B cells in spleen and B1a cells from abdominal cavity perfusion fluid, the secretion of IgG and IgM, and the expression of Baff. Additionally, knockdown of Ormdl3 augmented the apoptosis of total splenic cells and splenic CD19 + B cells but did not affect B cell proliferation and cell cycle. Subsequently, we in vitro and in vivo demonstrated that ORMDL3 potentially mediates the autophagy via the ATF 6–Beclin1 autophagy pathway, and it facilitates the survival of splenic B cells via promoting autophagy and suppressing apoptosis. Taken together, we uncovered a role of ORMDL3 in fine-tuning B cell development and survival, besides highlighting a potential mechanism by which ORMDL3 regulates autophagy via ATF6 pathway.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...