GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Society for Microbiology (ASM)  (117)
  • The American Association of Immunologists (AAI)  (46)
  • The Federation of American Societies for Experimental Biology (FASEB)  (23)
  • The Society of Nuclear Medicine (SNM)  (21)
  • 1
    Publication Date: 2017-08-22
    Description: PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all- trans -retinoic acid–induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phagocytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (〉200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which was recently shown to mediate the activation and repression of distinct classes of immune genes in innate immune cells. We report that lincRNA-Cox2 , located at chromosome 1 proximal to the PG-endoperoxide synthase 2 ( Ptgs2/Cox2 ) gene, is an early-primary inflammatory gene controlled by NF-B signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-B–regulated late-primary inflammatory response genes stimulated by bacterial LPS. Specifically, lincRNA-Cox2 is assembled into the switch/sucrose nonfermentable (SWI/SNF) complex in cells after LPS stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-B subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory-response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role for NF-B–induced lincRNA-Cox2 as a coactivator of NF-B for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-01
    Description: Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (〉200 nt) from the intergenic regions of annotated protein-coding genes. We report here that the lincRNA gene lincRNA-Tnfaip3 , located at mouse chromosome 10 proximal to the tumor necrosis factor α-induced protein 3 ( Tnfaip3 ) gene, is an early-primary response gene controlled by nuclear factor-B (NF-B) signaling in murine macrophages. Functionally, lincRNA- Tnfaip3 appears to mediate both the activation and repression of distinct classes of inflammatory genes in macrophages. Specifically, induction of lincRNA-Tnfaip3 is required for the transactivation of NF-B-regulated inflammatory genes in response to bacterial LPSs stimulation. LincRNA-Tnfaip3 physically interacts with the high-mobility group box 1 (Hmgb1), assembling a NF-B/Hmgb1/lincRNA-Tnfaip3 complex in macrophages after LPS stimulation. This resultant NF-B/Hmgb1/lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modifications and, ultimately, transactivation of inflammatory genes in mouse macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-B-induced lincRNA-Tnfaip3 to act as a coactivator of NF-B for the transcription of inflammatory genes in innate immune cells through modulation of epigenetic chromatin remodeling.—Ma, S., Ming, Z., Gong, A.-Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., Chen, X.-M. A long noncoding RNA, LincRNA-Tnfaip3, acts as a coregulator of NF-B to modulate inflammatory gene transcription in mouse macrophages.
    Print ISSN: 0892-6638
    Electronic ISSN: 1530-6860
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-19
    Description: Several lines of evidence indicate the instability of CD4 + Foxp3 + regulatory T cells (Tregs). We have therefore investigated means of promoting the stability of Tregs. In this study, we found that the proportion of Tregs in mouse strains deficient in TNFR2 or its ligands was reduced in the thymus and peripheral lymphoid tissues, suggesting a potential role of TNFR2 in promoting the sustained expression of Foxp3. We observed that upon in vitro activation with plate-bound anti-CD3 Ab and soluble anti-CD28 Ab, Foxp3 expression by highly purified mouse Tregs was markedly downregulated. Importantly, TNF partially abrogated this effect of TCR stimulation and stabilized Foxp3 expression. This effect of TNF was blocked by anti-TNFR2 Ab, but not by anti-TNFR1 Ab. Furthermore, TNF was not able to maintain Foxp3 expression by TNFR2-deficient Tregs. In a mouse colitis model induced by transfer of naive CD4 cells into Rag1 –/– mice, the disease could be inhibited by cotransfer of wild-type Tregs, but not by cotransfer of TNFR2-deficient Tregs. Furthermore, in the lamina propria of the colitis model, most wild-type Tregs maintained Foxp3 expression. In contrast, an increased number of TNFR2-deficient Tregs lost Foxp3 expression. Thus, our data clearly show that TNFR2 is critical for the phenotypic and functional stability of Tregs in the inflammatory environment. This effect of TNF should be taken into account when designing future therapy of autoimmunity and graft-versus-host disease by using TNF inhibitors.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-11
    Description: (CTG) n · (CAG) n trinucleotide repeat (TNR) expansion in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG) n · (CAG) n structures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG) 45 · (CAG) 45 causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG) 45 · (CAG) 45 lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG) 45 · (CAG) 45 expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linked in vivo .
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-15
    Description: Arbidol is a broad-spectrum antiviral drug that is used clinically to treat influenza. In this study, the pharmacokinetics, metabolism, and excretion of arbidol were investigated in healthy male Chinese volunteers after a single oral administration of 200 mg of arbidol hydrochloride. A total of 33 arbidol metabolites were identified in human plasma, urine, and feces. The principal biotransformation pathways included sulfoxidation, dimethylamine N -demethylation, glucuronidation, and sulfate conjugation. The major drug-related component in the plasma was sulfinylarbidol (M6-1), followed by unmetabolized arbidol, N -demethylsulfinylarbidol (M5), and sulfonylarbidol (M8). The exposures of M5, M6-1, and M8, as determined by the metabolite-to-parent area under the plasma concentration-time curve from 0 to t (AUC 0- t ) ratio, were 0.9 ± 0.3, 11.5 ± 3.6, and 0.5 ± 0.2, respectively. In human urine, glucuronide and sulfate conjugates were detected as the major metabolites, accounting for 6.3% of the dose excreted within 0 to 96 h after drug administration. The fecal specimens mainly contained the unchanged arbidol, accounting for 32.4% of the dose. Microsomal incubation experiments demonstrated that the liver and intestines were the major organs that metabolize arbidol in humans. CYP3A4 was the major isoform involved in arbidol metabolism, whereas the other P450s and flavin-containing monooxygenases (FMOs) played minor roles. These results indicated possible drug interactions between arbidol and CYP3A4 inhibitors and inducers. Further investigations are needed to understand the importance of M6-1 in the efficacy and safety of arbidol, because of its high plasma exposure and long elimination half-life (25.0 h).
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-01
    Description: Glucagonlike peptide (GLP-1) and its receptor (GLP-1R) exhibit cardioprotective effects after myocardial ischemia and reperfusion (MI/R) in both animal studies and clinical trials. However, the kinetics of GLP-1R expression in the infarcted/ischemic myocardium has not yet been explored. The purpose of this study was to monitor the presence and time course of regional myocardial GLP-1R expression after MI/R with noninvasive PET. Methods: Male Sprague–Dawley rats underwent a 45-min transient left coronary artery occlusion, followed by reperfusion. The myocardial infarction was confirmed by electrocardiogram and cardiac ultrasound. In vivo PET was performed to determine myocardial uptake of 18 F-FBEM-Cys 40 -exendin-4 at different time points after reperfusion. The localization of 18 F-FBEM-Cys 40 -exendin-4 accumulation was determined by coregistering 18 F-FDG PET and CT images. Ex vivo autoradiography, GLP-1R immunohistochemical staining, and Western blot analysis were performed to confirm the PET results. Results: Myocardial origin and infarcted/ischemic area localization of 18 F-FBEM-Cys 40 -exendin-4 accumulation was confirmed by coregistration of small-animal CT and 18 F-FDG images. At 8 h after MI/R, tracer uptake in the infarcted/ischemic region was 0.37 ± 0.05 percentage injected dose per gram, significantly higher than that in the control group ( P 〈 0.01). The localized tracer uptake decreased, relative to the 8-h time point, but was still significantly higher than the control group on days 1 and 3 after MI/R. At 2 wk after MI/R, the tracer uptake in the affected area showed no significant difference, compared with that in the healthy myocardium. Autoradiography showed the same trend of 18 F-FBEM-Cys 40 -exendin-4 uptake in the myocardial infarcted/ischemic area. The specificity of tracer uptake into ischemic myocardium was supported by decreased tracer uptake after the rats were pretreated with an excess amount of unlabeled exendin-4. Immunohistochemical staining and Western blotting of GLP-1R protein of excised cardiac sections confirmed that the change in uptake observed by PET corresponded to a change in GLP-1R expression. Conclusion: Noninvasive PET using 18 F-FBEM-Cys 40 -exendin-4 revealed a dynamic pattern of GLP-1R upregulation in the infarcted/ischemic area after MI/R. The imaging results will deepen our understanding of the mechanism of the cardioprotective effect of GLP-1 and its analogs and potentially provide guidance for optimization of the time frame of therapeutic intervention.
    Print ISSN: 0022-3123
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-09-13
    Description: Historically, the incidence of gentamicin resistance in Campylobacter has been very low, but recent studies reported a high prevalence of gentamicin-resistant Campylobacter isolated from food-producing animals in China. The reason for the high prevalence was unknown and was addressed in this study. PCR screening identified aminoglycoside resistance genes aphA-3 and aphA-7 and the aadE–sat4–aphA-3 cluster among 41 Campylobacter isolates from broiler chickens. Importantly, a novel genomic island carrying multiple aminoglycoside resistance genes was identified in 26 aminoglycoside resistant Campylobacter coli strains. Sequence analysis revealed that the genomic island was inserted between cadF and COO1582 on the C. coli chromosome and consists of 14 open reading frames (ORFs), including 6 genes (the aadE–sat4–aphA-3 cluster, aacA-aphD , aac , and aadE ) encoding aminoglycoside-modifying enzymes. Analysis by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing indicated that the C. coli isolates carrying this unique genomic island were clonal, and the clone of PFGE subtype III and sequence type (ST) 1625 was particularly predominant among the C. coli isolates examined, suggesting that clonal expansion may be involved in dissemination of this resistance island. Additionally, we were able to transfer this genomic island from C. coli to a Campylobacter jejuni strain using natural transformation under laboratory conditions, and the transfer resulted in a drastic increase in aminoglycoside resistance in the recipient strain. These findings identify a previously undescribed genomic island that confers resistance to multiple aminoglycoside antibiotics. Since aminoglycoside antibiotics are used for treating occasional systemic infections caused by Campylobacter , the emergence and spread of this antibiotic resistance genomic island represent a potential concern for public health.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-22
    Description: More than 350 million people are chronically infected with hepatitis B virus, and dysfunctional T cell responses contribute to persistent viral infection and immunopathogenesis in chronic hepatitis B (CHB). However, the underlying mechanisms of T cell hyporesponsiveness remain largely undefined. Given the important role of microRNA-146a (miR-146a) in diverse aspects of lymphocyte function, we investigated the potential role and mechanism of miR-146a in regulating T cell immune responses in CHB. We found that miR-146a expression in T cells is significantly upregulated in CHB compared with healthy controls, and miR-146a levels were correlated with serum alanine aminotransaminase levels. Both inflammatory cytokines and viral factors led to miR-146a upregulation in T cells. Stat1 was identified as a miR-146a target that is involved in antiviral cytokine production and the cytotoxicity of CD4 + and CD8 + T cells. In vitro blockage of miR-146a in T cells in CHB greatly enhanced virus-specific T cell activity. Therefore, our work demonstrates that miR-146a upregulation in CHB causes impaired T cell function, which may contribute to immune defects and immunopathogenesis during chronic viral infection.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-22
    Description: Critical roles of IL-27 in autoimmune diseases and infections have been reported; however, the contribution of endogenous IL-27 to tumor progression remains elusive. In this study, by using IL-27p28 conditional knockout mice, we demonstrate that IL-27 is critical in protective immune response against methyl-cholanthrene–induced fibrosarcoma and transplanted B16 melanoma, and dendritic cells (DCs) are the primary source. DC-derived IL-27 is required for shaping tumor microenvironment by inducing CXCL-10 expression in myeloid-derived suppressor cells and regulating IL-12 production from DCs, which lead to the recruitment and activation of NK and NKT cells resulting in immunological control of tumors. Indeed, reconstitution of IL-27 or CXCL-10 in tumor site significantly inhibits tumor growth and restores the number and activation of NK and NKT cells. In summary, our study identifies a previous unknown critical role of DC-derived IL-27 in NK and NKT cell–dependent antitumor immunity through shaping tumor microenvironment, and sheds light on developing novel therapeutic approaches based on IL-27.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...