GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (1)
Material
Publisher
  • The American Association of Immunologists  (1)
Language
Years
Subjects(RVK)
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 191, No. 8 ( 2013-10-15), p. 4317-4325
    Abstract: Eosinophils are major effector cells in type 2 inflammatory responses and become activated in response to IL-4 and IL-33, yet the molecular mechanisms and cooperative interaction between these cytokines remain unclear. Our objective was to investigate the molecular mechanism and cooperation of IL-4 and IL-33 in eosinophil activation. Eosinophils derived from bone marrow or isolated from Il5-transgenic mice were activated in the presence of IL-4 or IL-33 for 1 or 4 h, and the transcriptome was analyzed by RNA sequencing. The candidate genes were validated by quantitative PCR and ELISA. We demonstrated that murine-cultured eosinophils respond to IL-4 and IL-33 by phosphorylation of STAT-6 and NF-κB, respectively. RNA sequence analysis of murine-cultured eosinophils indicated that IL-33 induced 519 genes, whereas IL-4 induced only 28 genes, including 19 IL-33–regulated genes. Interestingly, IL-33 induced eosinophil activation via two distinct mechanisms, IL-4 independent and IL-4 secretion/autostimulation dependent. Anti–IL-4 or anti–IL-4Rα Ab-treated cultured and mature eosinophils, as well as Il4- or Stat6-deficient cultured eosinophils, had attenuated protein secretion of a subset of IL-33–induced genes, including Retnla and Ccl17. Additionally, IL-33 induced the rapid release of preformed IL-4 protein from eosinophils by a NF-κB–dependent mechanism. However, the induction of most IL-33–regulated transcripts (e.g., Il6 and Il13) was IL-4 independent and blocked by NF-κB inhibition. In conclusion, we have identified a novel activation pathway in murine eosinophils that is induced by IL-33 and differentially dependent upon an IL-4 auto-amplification loop.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2013
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...