GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • The American Association of Immunologists  (1)
Materialart
Verlag/Herausgeber
  • The American Association of Immunologists  (1)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    The American Association of Immunologists ; 2005
    In:  The Journal of Immunology Vol. 174, No. 12 ( 2005-06-15), p. 7977-7985
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 174, No. 12 ( 2005-06-15), p. 7977-7985
    Kurzfassung: Severe acute respiratory syndrome (SARS) caused by a novel human coronavirus (CoV), designated SARS-CoV, is a highly contagious respiratory disease with the lungs as a major target. Although the exact mechanism of SARS-CoV pathogenesis remains unknown, an intense, ill-regulated local inflammatory response has been suggested as partially responsible for the devastating lung pathology. We investigated the interaction of SARS-CoV with human macrophages (Mφ) and dendritic cells (DC), two key innate immune cells of the host immune system, by focusing on their susceptibility to viral infection and subsequent responses (e.g., phenotypic maturation, T cell-priming activity, phagocytosis, and cytokine production). We found neither cell to be permissive for SARS-CoV replication. However, incubation of Mφ and DC with live, but not gamma irradiation-inactivated, viruses appeared to better sustain their viability. Also, exposure to infectious SARS-CoV led to the phenotypic and functional maturation of DC, with regard to MHC class II and costimulatory molecule expression, T cell-stimulatory capacity, and cytokine production, respectively. Cytokine production was also observed for Mφ, which were refractory to cell surface phenotypic changes. Strikingly, live SARS-CoV could further prime cell types to respond to a suboptimal dose of bacterial LPS (100 ng/ml), resulting in massive release of IL-6 and IL-12. However, the endocytic capacity (e.g., Ag capture) of Mφ was significantly compromised upon exposure to infectious SARS-CoV. This study is the first demonstration that although SARS-CoV does not productively infect human Mφ or DC, it appears to exert differential effects on Mφ and DC maturation and functions, which might contribute to SARS pathogenesis.
    Materialart: Online-Ressource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: The American Association of Immunologists
    Publikationsdatum: 2005
    ZDB Id: 1475085-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...