GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (2)
Material
Publisher
  • The American Association of Immunologists  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2000
    In:  The Journal of Immunology Vol. 165, No. 11 ( 2000-12-01), p. 6504-6510
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 165, No. 11 ( 2000-12-01), p. 6504-6510
    Abstract: Endothelial surface expression of P-selectin and subsequent leukocyte rolling in venules can be induced by mast cell-derived histamine and binding of thrombin to protease-activated receptor-1 (PAR1). We hypothesized that activation of endothelial PAR2 by mast cell tryptase or other proteases also contributes to inflammatory responses. Leukocyte rolling flux and rolling velocity were assessed by intravital microscopy of the cremaster muscles of wild-type mice following perivenular micropipette injections of a control (LSIGRL) or PAR2-activating (SLIGRL) oligopeptide. Injection of SLIGRL increased mean rolling leukocyte flux fraction from 34 ± 11 to 71 ± 24% (p & lt; 0.05) and decreased mean rolling velocity from 63 ± 29 to 32 ± 2 μm/s (p & lt; 0.05). No significant changes occurred with control peptide injection. To further evaluate the role of PAR2 in inflammatory responses, PAR2-deficient mice were generated by gene targeting and homologous recombination. Perivenular injections of SLIGRL resulted in only a small increase in rolling leukocyte flux fraction (from 21 ± 8 to 30 ± 2%) and no change in rolling velocity. Leukocyte rolling after surgical trauma was assessed in 9 PAR2-deficient and 12 wild-type mice. Early (0–15 min) after surgical trauma, the mean leukocyte rolling flux fraction was lower (10 ± 3 vs 30 ± 6%, p & lt; 0.05) and mean rolling velocity was higher (67 ± 46 vs 52 ± 36 μm/s, p & lt; 0.01) in PAR2-deficient compared with control mice. The defect in leukocyte rolling in PAR2-deficient mice did not persist past 30 min following surgical trauma. These results indicate that activation of PAR2 produces microvascular inflammation by rapid induction of P-selectin-mediated leukocyte rolling. In the absence of PAR2, the onset of inflammation is delayed.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2000
    detail.hit.zdb_id: 1475085-5
    detail.hit.zdb_id: 3056-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2005
    In:  The Journal of Immunology Vol. 175, No. 4 ( 2005-08-15), p. 2598-2605
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 175, No. 4 ( 2005-08-15), p. 2598-2605
    Abstract: Protease-activated receptors (PARs) and tachykinin-immunoreactive fibers are located in the lung as sentries to respond to a variety of pathological stimuli. The effects of PAR activation on the lung have not been adequately studied. We report on the effects of instilling PAR-activating peptides (PAR-APs, including PAR1-, PAR2-, and PAR4-AP) into the lungs of ventilated or spontaneously breathing mice. PAR2-AP, but not PAR1-AP or PAR4-AP, caused a sharp increase in lung endothelial and epithelial permeability to protein, extravascular lung water, and airway tone. No responses to PAR2-AP were detected in PAR2 knockout mice. In bronchoalveolar lavage, PAR2 activation caused 8- and 5-fold increase in MIP-2 and substance P levels, respectively, and a 12-fold increase in the number of neutrophils. Ablation of sensory neurons (by capsaicin) markedly decreased the PAR2-mediated airway constriction, and virtually abolished PAR2-mediated pulmonary inflammation and edema, as did blockade of NK1 or NK2 receptors. Thus, PAR2 activation in the lung induces airway constriction, lung inflammation, and protein-rich pulmonary edema. These effects were either partly or completely neuropeptide dependent, suggesting that PAR2 can cause lung inflammation by a neurogenic mechanism.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2005
    detail.hit.zdb_id: 1475085-5
    detail.hit.zdb_id: 3056-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...