GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (2)
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 167, No. 6 ( 2001-09-15), p. 3521-3529
    Abstract: Polymyositis and dermatomyositis are diseases characterized by muscle weakness and muscle inflammatory infiltrates. Their pathogenesis remains unclear. A central role for endomysial autoaggressive CD8+ T cells is suspected in polymyositis and for perivascular B cells in dermatomyositis. We compared the T cell repertoire of 10 polymyositis and 10 dermatomyositis patients by immunoscope, a method providing a global assessment of the T cell repertoire and a sensitive detection of clonal T cell expansions. Samples were analyzed qualitatively and quantitatively in the blood (unsorted cells and CD4+ and CD8+ cells) and in muscle infiltrates. Dramatic perturbations of the T cell repertoire were observed in the blood of polymyositis but not dermatomyositis patients (p & lt; 0.0005), the latter being undistinguishable from controls. These perturbations were due to oligoclonal expansions of CD8+ T cells and most blood clonal expansions were also found in muscle. These results indicate that the pathogenesis of polymyositis and dermatomyositis is different and reinforce the view that polymyositis but not dermatomyositis is an autoimmune CD8+ T cell-mediated disease. Moreover, this method may be helpful for the differential diagnosis of polymyositis and dermatomyositis and for noninvasive follow-up of polymyositis patients.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2001
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 197, No. 5 ( 2016-09-01), p. 1621-1630
    Abstract: Antisynthetase syndrome (aSS) is characterized by the association of interstitial lung disease and myositis with anti–tRNA synthetase autoantibodies. Immune mechanisms leading to aSS could be initiated in the lungs, but the role of NK cells has not yet been studied. Both extensive NK cell phenotype and functions were compared between 33 patients and 26 controls. Direct and redirected polyfunctionality assays (degranulation and intracellular production of TNF-α and IFN-γ) were performed spontaneously or after IL-12 plus IL-18 stimulation in the presence of K562 or P815 target cells, respectively. NK cells from inactive patients showed normal phenotype, whereas active aSS revealed a differentiated NK cell profile, as indicated by increased CD57 and Ig-like transcript 2 and an inability to produce IFN-γ (p = 0.002) compared with controls. Importantly, active aSS was more specifically associated with a significant NKp30 decrease (p = 0.009), although levels of mRNA and intracellular protein were similar in aSS and healthy controls. This NKp30 decrease was strongly correlated with reduced NK cell polyfunctionality in both direct and redirected killing assays with anti-NKp30 Abs (p = 0.009 and p = 0.03, respectively), confirming its important impact in aSS. Histological studies revealed massive infiltrations of NK cells inside the lungs of aSS patients (148 versus 11/mm2). Taken together, these data suggest that NK cells and NKp30 could play a role in aSS pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2016
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...