GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2007
    In:  The Journal of Immunology Vol. 179, No. 8 ( 2007-10-15), p. 5474-5482
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 179, No. 8 ( 2007-10-15), p. 5474-5482
    Abstract: Septic syndrome is a consequence of innate immune failure. Recent studies showed that the CC chemokine CCL6 enhanced antimicrobial immunity during experimental sepsis through an unknown mechanism. The present study demonstrates that transgenic CCL6 expression abolishes mortality in a septic peritonitis model via the modulation of resident peritoneal cell activation and, more importantly, through the recruitment of IFN-producing NK cells and killer dendritic cells into the peritoneum. Thus, CCL6 attenuates the immune failure during sepsis, in part, through a protective type 1-cytokine mediated mechanism.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2005
    In:  The Journal of Immunology Vol. 174, No. 3 ( 2005-02-01), p. 1616-1620
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 174, No. 3 ( 2005-02-01), p. 1616-1620
    Abstract: The 5-lipoxygenase (5-LO)-derived leukotrienes (LTs) influence both local innate immunity and vascular responses, but the relative importance of effects on these two processes in sepsis is unknown. In a cecal ligation and puncture model of peritonitis with severe sepsis, 5-LO−/− mice showed a reduction in peritoneal neutrophil accumulation and an increase in the number of bacteria in the peritoneal cavity. Despite this impairment of local innate immunity, the null mice exhibited a marked improvement in survival, and this protection was also seen in wild-type animals treated with the LT synthesis inhibitor MK 886. A survival advantage in severe sepsis was also observed in mice treated with the cysteinyl-LT receptor antagonist MK 571, but not with the LTB4 receptor antagonist CP 105, 696. Protection in the 5-LO−/− mice was associated with reduced vascular leak and serum lactate levels. Moreover, wild-type mice treated with MK 571 exhibited less sepsis-induced hypotension. These data demonstrate opposing effects of cysteinyl-LTs on innate immune vs hemodynamic responses, demonstrating protective effects on local immunity and deleterious effects on the vasculature. They also suggest the possible therapeutic utility of targeting vascular events in sepsis with cysteinyl-LT blockade.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2005
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 186, No. 11 ( 2011-06-01), p. 6562-6567
    Abstract: High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B4 (LTB4). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B4 receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO−/−) mice. Heme administration in vivo increased peritoneal levels of LTB4 prior to and during neutrophil recruitment. Evidence that LTB4 was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB4 was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB4 production or neutrophil influx; 4) increased levels of LTB4 were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB4. Our findings uncover a crucial role of LTB4 in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2011
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 182, No. 9 ( 2009-05-01), p. 5374-5381
    Abstract: Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (α-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-β level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...