GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (2)
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 1999
    In:  The Journal of Immunology Vol. 163, No. 3 ( 1999-08-01), p. 1274-1281
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 163, No. 3 ( 1999-08-01), p. 1274-1281
    Abstract: Activation-induced cell death is a process by which overactivated T cells are eliminated, thus preventing potential autoimmune attacks. Two known mediators of activation-induced cell death are Fas(CD95) ligand (FasL) and APO2 ligand (APO2L)/TNF-related apoptosis-inducing ligand (TRAIL). We show here that upon mitogenic stimulation, bioactive FasL and APO2L are released from the T cell leukemia Jurkat and from normal human T cell blasts as intact, nonproteolyzed proteins associated with a particulate, ultracentrifugable fraction. We have characterized this fraction as microvesicles of 100–200 nm in diameter. These microvesicles are released from Jurkat and T cell blasts shortly (≤1 h) after PHA stimulation, well before the cell enters apoptosis. FasL- and APO2L-containing vesicles are also present in supernatants from PHA-activated fresh human PBMC. These observations provide the basis for a new and efficient mechanism for the rapid induction of autocrine or paracrine cell death during immune regulation.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1999
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 1998
    In:  The Journal of Immunology Vol. 160, No. 3 ( 1998-02-01), p. 1059-1066
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 160, No. 3 ( 1998-02-01), p. 1059-1066
    Abstract: TCR engagement activates phospholipase Cγ1 (PLCγ1) via a tyrosine phosphorylation-dependent mechanism. PLCγ1 contains a pair of Src homology 2 (SH2) domains whose function is that of promoting protein interactions by binding phosphorylated tyrosine and adjacent amino acids. The role of the PLCγ1 SH2 domains in PLCγ1 phosphorylation was explored by mutational analysis of an epitope-tagged protein transiently expressed in Jurkat T cells. Mutation of the amino-terminal SH2 domain (SH2(N) domain) resulted in defective tyrosine phosphorylation of PLCγ1 in response to TCR/CD3 perturbation. In addition, the PLCγ1 SH2(N) domain mutant failed to associate with Grb2 and a 36- to 38-kDa phosphoprotein (p36–38), which has previously been recognized to interact with PLCγ1, Grb2, and other molecules involved in TCR signal transduction. Conversely, mutation of the carboxyl-terminal SH2 domain (SH2(C) domain) did not affect TCR-induced tyrosine phosphorylation of PLCγ1. Furthermore, binding of p36–38 to PLCγ1 was not abrogated by mutations of the SH2(C) domain. In contrast to TCR/CD3 ligation, treatment of cells with pervanadate induced tyrosine phosphorylation of either PLCγ1 SH2(N) or SH2(C) domain mutants to a level comparable with that of the wild-type protein, indicating that pervanadate treatment induces an alternate mechanism of PLCγ1 phosphorylation. These data indicate that the SH2(N) domain is required for TCR-induced PLCγ1 phosphorylation, presumably by participating in the formation of a complex that promotes the association of PLCγ1 with a tyrosine kinase.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1998
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...