GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-16
    Description: Purpose: Osteosarcoma is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of osteosarcoma, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based. The identification of new therapies and therapeutic targets are urgently needed to enable improved outcomes for osteosarcoma patients. Experimental Design: We have used genetically engineered murine models of human osteosarcoma in a systematic, genome-wide screen to identify new candidate therapeutic targets. We performed a genome-wide siRNA screen, with or without doxorubicin. In parallel, a screen of therapeutically relevant small molecules was conducted on primary murine– and primary human osteosarcoma–derived cell cultures. All results were validated across independent cell cultures and across human and mouse osteosarcoma. Results: The results from the genetic and chemical screens significantly overlapped, with a profound enrichment of pathways regulated by PI3K and mTOR pathways. Drugs that concurrently target both PI3K and mTOR were effective at inducing apoptosis in primary osteosarcoma cell cultures in vitro in both human and mouse osteosarcoma, whereas specific PI3K or mTOR inhibitors were not effective. The results were confirmed with siRNA and small molecule approaches. Rationale combinations of specific PI3K and mTOR inhibitors could recapitulate the effect on osteosarcoma cell cultures. Conclusions: The approaches described here have identified dual inhibition of the PI3K–mTOR pathway as a sensitive, druggable target in osteosarcoma, and provide rationale for translational studies with these agents. Clin Cancer Res; 21(14); 3216–29. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-15
    Description: Purpose: HSV1716 is an oncolytic herpes simplex virus-1 (HSV-1) studied in adults via injection into the brain and superficial tumors. To determine the safety of administering HSV1716 to pediatric patients with cancer, we conducted a phase I trial of image-guided injection in young patients with relapsed or refractory extracranial cancers. Experimental Design: We delivered a single dose of 10 5 to 10 7 infectious units of HSV1716 via computed tomography–guided intratumoral injection and measured tumor responses by imaging. Patients were eligible for up to three more doses if they achieved stable disease. We monitored HSV-1 serum titers and shedding by PCR and culture. Results: We administered a single dose of HSV1716 to eight patients and two doses to one patient. We did not observe any dose-limiting toxicities. Adverse events attributed to virus included low-grade fever, chills, and mild cytopenias. Six of eight HSV-1 seronegative patients at baseline showed seroconversion on day 28. Six of nine patients had detectable HSV-1 genomes by PCR in peripheral blood appearing on day +4 consistent with de novo virus replication. Two patients had transient focal increases in metabolic activity on 18 fluorine-deoxyglucose PET, consistent with inflammatory reactions. In one case, the same geographic region that flared later appeared necrotic on imaging. No patient had an objective response to HSV1716. Conclusions: Intratumoral HSV1716 is safe and well-tolerated without shedding in children and young adults with late-stage, aggressive cancer. Viremia consistent with virus replication and transient inflammatory reactions hold promise for future HSV1716 studies. Clin Cancer Res; 23(14); 3566–74. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-16
    Description: Purpose: Introduced in 1987, platinum-based chemotherapy remains standard of care for small cell lung cancer (SCLC), a most aggressive, recalcitrant tumor. Prominent barriers to progress are paucity of tumor tissue to identify drug targets and patient-relevant models to interrogate novel therapies. Following our development of circulating tumor cell patient–derived explants (CDX) as models that faithfully mirror patient disease, here we exploit CDX to examine new therapeutic options for SCLC. Experimental Design: We investigated the efficacy of the PARP inhibitor olaparib alone or in combination with the WEE1 kinase inhibitor AZD1775 in 10 phenotypically distinct SCLC CDX in vivo and/or ex vivo . These CDX represent chemosensitive and chemorefractory disease including the first reported paired CDX generated longitudinally before treatment and upon disease progression. Results: There was a heterogeneous depth and duration of response to olaparib/AZD1775 that diminished when tested at disease progression. However, efficacy of this combination consistently exceeded that of cisplatin/etoposide, with cures in one CDX model. Genomic and protein analyses revealed defects in homologous recombination repair genes and oncogenes that induce replication stress (such as MYC family members), predisposed CDX to combined olaparib/AZD1775 sensitivity, although universal predictors of response were not noted. Conclusions: These preclinical data provide a strong rationale to trial this combination in the clinic informed by prevalent, readily accessed circulating tumor cell–based biomarkers. New therapies will be evaluated in SCLC patients after first-line chemotherapy, and our data suggest that the combination of olaparib/AZD1775 should be used as early as possible and before disease relapse. Clin Cancer Res; 24(20); 5153–64. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-16
    Description: Purpose: Ovarian cancer has the highest mortality rate of all the gynecologic malignancies and is responsible for approximately 140,000 deaths annually worldwide. Copy number amplification is frequently associated with the activation of oncogenic drivers in this tumor type, but their cytogenetic complexity and heterogeneity has made it difficult to determine which gene(s) within an amplicon represent(s) the genuine oncogenic driver. We sought to identify amplicon targets by conducting a comprehensive functional analysis of genes located in the regions of amplification in high-grade serous and endometrioid ovarian tumors. Experimental Design: High-throughput siRNA screening technology was used to systematically assess all genes within regions commonly amplified in high-grade serous and endometrioid cancer. We describe the results from a boutique siRNA screen of 272 genes in a panel of 18 ovarian cell lines. Hits identified by the functional viability screen were further interrogated in primary tumor cohorts to determine the clinical outcomes associated with amplification and gene overexpression. Results: We identified a number of genes as critical for cellular viability when amplified, including URI1 , PAK4 , GAB2 , and DYRK1B . Integration of primary tumor gene expression and outcome data provided further evidence for the therapeutic use of such genes, particularly URI1 and GAB2 , which were significantly associated with survival in 2 independent tumor cohorts. Conclusion: By taking this integrative approach to target discovery, we have streamlined the translation of high-resolution genomic data into preclinical in vitro studies, resulting in the identification of a number of genes that may be specifically targeted for the treatment of advanced ovarian tumors. Clin Cancer Res; 19(6); 1411–21. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...