GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-02
    Description: Epithelial-to-mesenchymal transition (EMT) enables metastasis. E-cadherin loss is a hallmark of EMT, but there remains an incomplete understanding of the epigenetics of this process. The protein arginine methyltransferase PRMT7 functions in various physiologic processes, including mRNA splicing, DNA repair, and neural differentiation, but its possible roles in cancer and metastasis have not been explored. In this report, we show that PRMT7 is expressed at higher levels in breast carcinoma cells and that elevated PRMT7 mediates EMT and metastasis. PRMT7 could inhibit the expression of E-cadherin by binding to its proximal promoter in a manner associated with altered histone methylation, specifically with elevated H4R3me2s and reduced H3K4me3, H3Ac, and H4Ac, which occurred at the E-cadherin promoter upon EMT induction. Moreover, PRMT7 interacted with YY1 and HDAC3 and was essential to link these proteins to the E-cadherin promoter. Silencing PRMT7 restored E-cadherin expression by repressing H4R3me2s and by increasing H3K4me3 and H4Ac, attenuating cell migration and invasion in MDA-MB-231 breast cancer cells. Overall, our results define PRMT7 as an inducer of breast cancer metastasis and present the opportunity for applying PRMT7-targeted therapeutics to treat highly invasive breast cancers. Cancer Res; 74(19); 5656–67. ©2014 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-17
    Description: Pyruvate dehydrogenase kinase PDK1 is a metabolic enzyme responsible for switching glucose metabolism from mitochondrial oxidation to aerobic glycolysis in cancer cells, a general hallmark of malignancy termed the Warburg effect. Herein we report the identification of JX06 as a selective covalent inhibitor of PDK1 in cells. JX06 forms a disulfide bond with the thiol group of a conserved cysteine residue (C240) based on recognition of a hydrophobic pocket adjacent to the ATP pocket of the PDK1 enzyme. Our investigations of JX06 mechanism suggested that covalent modification at C240 induced conformational changes at Arginine 286 through Van der Waals forces, thereby hindering access of ATP to its binding pocket and in turn impairing PDK1 enzymatic activity. Notably, cells with a higher dependency on glycolysis were more sensitive to PDK1 inhibition, reflecting a metabolic shift that promoted cellular oxidative stress and apoptosis. Our findings offer new mechanistic insights including how to therapeutically target PDK1 by covalently modifying the C240 residue. Cancer Res; 75(22); 4923–36. ©2015 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-03
    Description: As a validated therapeutic target in several human cancers, the EGF receptor (EGFR) provides a focus to gain deeper insights into cancer pathophysiology. In this study, we report the identification of a naturally occurring and widely expressed EGFR isoform termed EGFRvA, which substitutes a Ser/Thr-rich peptide for part of the carboxyl-terminal regulatory domain of the receptor. Intriguingly, EGFRvA expression relates more closely to histopathologic grade and poor prognosis in patients with glioma. Ectopic expression of EGFRvA in cancer cells conferred a higher invasive capacity than EGFR in vitro and in vivo. Mechanistically, EGFRvA stimulated expression of STAT3, which upregulated heparin-binding EGF (HB-EGF). Reciprocally, HB-EGF stimulated phosphorylation of EGFRvA at Y845 along with STAT3, generating a positive feedback loop that may reinforce invasive function. The significance of EGFRvA expression was reinforced by findings that it is attenuated by miR-542-5p, a microRNA that is a known tumor suppressor. Taken together, our findings define this newfound EGFR isoform as a key theranostic molecule. Cancer Res; 73(23); 7056–67. ©2013 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-16
    Description: Purpose: Estrogen receptor–positive (ER + ) breast cancers are typically treated with endocrine agents, and dependence on the ER pathway is often retained even after multiple rounds of antiestrogen therapy. Selective estrogen receptor degraders (SERD) are being developed as a strategy to more effectively target ER and exploit ER dependence in these cancers, which includes inhibiting both wild-type and mutant forms of ER. The purpose of this study was to evaluate the efficacy of a novel orally bioavailable SERD, elacestrant (RAD1901), in preclinical models of ER + breast cancer. Experimental Design: Elacestrant was evaluated as a single agent and in combination with palbociclib or everolimus in multiple ER + breast cancer models, including several patient-derived xenograft models. Results: Elacestrant induces the degradation of ER, inhibits ER-mediated signaling and growth of ER + breast cancer cell lines in vitro and in vivo , and significantly inhibits tumor growth of multiple PDX models. Furthermore, we demonstrate that elacestrant in combination with palbociclib or everolimus can lead to greater efficacy in certain contexts. Finally, elacestrant exhibits significant antitumor activity both as a single agent and in combination with palbociclib in two patient-derived breast cancer xenograft models harboring ESR1 mutations. Conclusions: These data underscore the potential clinical utility of elacestrant as a single agent and as a combination therapy, for both early- and late-stage ER + disease. Clin Cancer Res; 23(16); 4793–804. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-16
    Description: Purpose: The aim of our study is to elucidate whether T cells expressing GPC3-targeted chimeric antigen receptor (CAR) can efficiently eliminate GPC3-positive HCC cells and their potential in the treatment of HCC. Experimental Design: T cells expressing a first-generation and third-generation GPC3-targeted CAR were prepared using lentiviral vector transduction. The in vitro and in vivo cytotoxic activities of the genetically engineered CAR T cells were evaluated against various HCC cell lines. Results: GPC3-targeted CAR T cells could efficiently kill GPC3-positive HCC cells but not GPC3-negative cells in vitro . These cytotoxic activities seemed to be positively correlated with GPC3 expression levels in the target cells. In addition, T cells expressing the third-generation GPC3-targeted CAR could eradicate HCC xenografts with high level of GPC3 expression and efficiently suppress the growth of HCC xenografts with low GPC3 expression level in vivo . The survival of the mice bearing established orthotopic Huh-7 xenografts was significantly prolonged by the treatment with the third-generation GPC3-targeted CAR T cells. Conclusions: GPC3-targeted CAR T cells could potently eliminate GPC3-positive HCC cells, thereby providing a promising therapeutic intervention for GPC3-positive HCC. Clin Cancer Res; 20(24); 6418–28. ©2014 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-16
    Description: Purpose: Immunotherapy with ipilimumab improves the survival of patients with metastatic melanoma. Because only around 20% of patients experience long-term benefit, reliable markers are needed to predict a clinical response. Therefore, we sought to determine if some myeloid cells and related inflammatory mediators could serve as predictive factors for the patients' response to ipilimumab. Experimental Design: We performed an analysis of myeloid cells in the peripheral blood of 59 stage IV melanoma patients before the treatment and at different time points upon the therapy using a clinical laboratory analysis and multicolor flow cytometry. In addition, the production of related inflammatory factors was evaluated by ELISA or Bio-Plex assays. Results: An early increase in eosinophil count during the treatment with ipilimumab was associated with an improved clinical response. In contrast, elevated amounts of monocytic myeloid-derived suppressor cells (moMDSC), neutrophils, and monocytes were found in nonresponders ( n = 36) as compared with basal levels and with responding patients ( n = 23). Moreover, in nonresponders, moMDSCs produced significantly more nitric oxide, and granulocytic MDSCs expressed higher levels of PD-L1 than these parameters at baseline and in responders, suggesting their enhanced immunosuppressive capacity. Upon the first ipilimumab infusion, nonresponders displayed elevated serum concentrations of S100A8/A9 and HMGB1 that attract and activate MDSCs. Conclusions: These findings highlight additional mechanisms of ipilimumab effects and suggest levels of eosinophils, MDSCs, as well as related inflammatory factors S100A8/A9 and HMGB1 as novel complex predictive markers for patients who may benefit from the ipilimumab therapy. Clin Cancer Res; 21(24); 5453–9. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-16
    Description: Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype lacking effective prognostic indicators or therapeutic targets. Mitochondrial function is dysregulated frequently in cancer cells to allow for adaptation to a harsh tumor microenvironment. Targeting mitochondrial biogenesis and bioenergetics is, therefore, an attractive therapeutic strategy. In this study, we performed quantitative proteomic analyses in human parental and metastatic breast cancer cell lines to identify mitochondrial proteins involved in TNBC metastasis. We found that single-strand DNA-binding protein 1 (SSBP1) was downregulated in highly metastatic breast cancer cells. Moreover, SSBP1 downregulation promoted TNBC cell metastasis in vitro and in vivo. Mechanistically, SSBP1 loss decreased mitochondrial DNA copy number, thereby potentiating calcineurin-mediated mitochondrial retrograde signaling that induced c-Rel/p50 nuclear localization, activated TGFβ promoter activity, and TGFβ-driven epithelial-to-mesenchymal transition. Low SSBP1 expression correlated with tumor progression and poor prognosis in patients. Collectively, our findings identified SSBP1 as a novel metastasis suppressor and elucidated the mechanisms by which dysregulated mitochondrial signaling contributes to metastatic potential, providing potential new prognostic indicators for patients with TNBC. Cancer Res; 76(4); 952–64. ©2015 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-16
    Description: Purpose: Pan-class histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. HDAC6 is a class IIb deacetylase that facilitates misfolded protein transport to the aggresome for degradation. We investigated the mechanism and therapeutic impact of the selective HDAC6 inhibitor ACY-1215 alone and in combination with bortezomib in preclinical models of lymphoma. Experimental Design: Concentration–effect relationships were defined for ACY-1215 across 16 lymphoma cell lines and for synergy with bortezomib. Mechanism was interrogated by immunoblot and flow cytometry. An in vivo xenograft model of DLBCL was used to confirm in vitro findings. A collection of primary lymphoma samples were surveyed for markers of the unfolded protein response (UPR). Results: Concentration–effect relationships defined maximal cytotoxicity at 48 hours with IC 50 values ranging from 0.9 to 4.7 μmol/L. Strong synergy was observed in combination with bortezomib. Treatment with ACY-1215 led to inhibition of the aggresome evidenced by acetylated α-tubulin and accumulated polyubiquitinated proteins and upregulation of the UPR. All pharmacodynamic effects were enhanced with the addition of bortezomib. Findings were validated in vivo where mice treated with the combination demonstrated significant tumor growth delay and prolonged overall survival. Evaluation of a collection of primary lymphoma samples for markers of the UPR revealed increased HDAC6, GRP78, and XBP-1 expression as compared with reactive lymphoid tissue. Conclusions: These data are the first results to demonstrate that dual targeting of protein degradation pathways represents an innovative and rational approach for the treatment of lymphoma. Clin Cancer Res; 21(20); 4663–75. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-02
    Description: Sirtuins participate in sensing nutrient availability and directing metabolic activity to match energy needs with energy production and consumption. However, the pivotal targets for sirtuins in cancer are mainly unknown. In this study, we identify the M2 isoform of pyruvate kinase (PKM2) as a critical target of the sirtuin SIRT2 implicated in cancer. PKM2 directs the synthesis of pyruvate and acetyl-CoA, the latter of which is transported to mitochondria for use in the Krebs cycle to generate ATP. Enabled by a shotgun mass spectrometry analysis founded on tissue culture models, we identified a candidate SIRT2 deacetylation target at PKM2 lysine 305 (K305). Biochemical experiments including site-directed mutants that mimicked constitutive acetylation suggested that acetylation reduced PKM2 activity by preventing tetramerization to the active enzymatic form. Notably, ectopic overexpression of a deacetylated PKM2 mutant in Sirt2-deficient mammary tumor cells altered glucose metabolism and inhibited malignant growth. Taken together, our results argued that loss of SIRT2 function in cancer cells reprograms their glycolytic metabolism via PKM2 regulation, partially explaining the tumor-permissive phenotype of mice lacking Sirt2. Cancer Res; 76(13); 3802–12. ©2016 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Purpose: Aberrant activation of the NF-B transcription factors underlies the aggressive behavior and poor outcome of pancreatic ductal adenocarcinoma (PDAC). However, clinically effective and safe NF-B inhibitors are not yet available. Because NF-B transcription factors can be activated by the interleukin-1 receptor-associated kinases (IRAKs) downstream of the Toll-like receptors (TLRs), but has not been explored in PDAC, we sought to investigate the role of IRAKs in the pathobiology of PDAC. Experimental Design: We examined the phosphorylation status of IRAK4 (p-IRAK4), the master regulator of TLR signaling, in PDAC cell lines, in surgical samples and commercial tissue microarray. We then performed functional studies using small-molecule IRAK1/4 inhibitor, RNA-interference, and CRISPR/Cas9n techniques to delineate the role of IRAK4 in NF-B activity, chemoresistance, cytokine production, and growth of PDAC cells in vitro and in vivo . Results: p-IRAK4 staining was detectable in the majority of PDAC lines and about 60% of human PDAC samples. The presence of p-IRAK4 strongly correlated with phospho-NF-B/p65 staining in PDAC samples and is predictive of postoperative relapse and poor overall survival. Inhibition of IRAK4 potently reduced NF-B activity, anchorage-independent growth, chemoresistance, and secretion of proinflammatory cytokines from PDAC cells. Both pharmacologic suppression and genetic ablation of IRAK4 greatly abolished PDAC growth in mice and augmented the therapeutic effect of gemcitabine by promoting apoptosis, reducing tumor cell proliferation and tumor fibrosis. Conclusions: Our data established IRAK4 as a novel therapeutic target for PDAC treatment. Development of potent IRAK4 inhibitors is needed for clinical testing. Clin Cancer Res; 23(7); 1748–59. ©2016 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...