GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-02
    Description: Purpose: The proteasome consists of chymotrypsin-like (CT-L), trypsin-like, and caspase-like subunits that cleave substrates preferentially by amino acid sequence. Proteasomes mediate degradation of regulatory proteins of the p53, Bcl-2, and nuclear factor-B (NF-B) families that are aberrantly active in chronic lymphocytic leukemia (CLL). CLL remains an incurable disease, and new treatments are especially needed in the relapsed/refractory setting. We therefore investigated the effects of the proteasome inhibitor carfilzomib (CFZ) in CLL cells. Experimental Design: Tumor cells from CLL patients were assayed in vitro using immunoblotting, real-time polymerase chain reaction, and electrophoretic mobility shift assays. In addition, a p53 dominant-negative construct was generated in a human B-cell line. Results: Unlike bortezomib, CFZ potently induces apoptosis in CLL patient cells in the presence of human serum. CLL cells have significantly lower basal CT-L activity compared to normal B and T cells, although activity is inhibited similarly in T cells versus CLL. Co-culture of CLL cells on stroma protected from CFZ-mediated cytotoxicity; however, PI3K inhibition significantly diminished this stromal protection. CFZ-mediated cytotoxicity in leukemic B cells is caspase-dependent and occurs irrespective of p53 status. In CLL cells, CFZ promotes atypical activation of NF-B evidenced by loss of cytoplasmic IBα, phosphorylation of IBα, and increased p50/p65 DNA binding, without subsequent increases in canonical NF-B target gene transcription. Conclusions: Together, these data provide new mechanistic insights into the activity of CFZ in CLL and support phase I investigation of CFZ in this disease. Clin Cancer Res; 19(9); 2406–19. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-15
    Description: Purpose: Extensive research over the past decade has revealed that the proinflammatory microenvironment plays a critical role in the development of colorectal cancer. Whether nimbolide, a limonoid triterpene, can inhibit the growth of colorectal cancer was investigated in the present study. Experimental Design: The effect of nimbolide on proliferation of colorectal cancer cell lines was examined by MTT assay, apoptosis by caspase activation and poly-ADP ribose polymerase cleavage, NF-B activation by DNA-binding assay, and protein expression by Western blotting. The effect of nimbolide on the tumor growth in vivo was examined in colorectal cancer xenografts in a nude mouse model. Results: Nimbolide inhibited proliferation, induced apoptosis, and suppressed NF-B activation and NF-B–regulated tumorigenic proteins in colorectal cancer cells. The suppression of NF-B activation by nimbolide was caused by sequential inhibition of IB kinase (IKK) activation, IBα phosphorylation, and p65 nuclear translocation. Furthermore, the effect of nimbolide on IKK activity was found to be direct. In vivo , nimbolide (at 5 and 20 mg/kg body weight), injected intraperitoneally after tumor inoculation, significantly decreased the volume of colorectal cancer xenografts. The limonoid-treated xenografts exhibited significant downregulation in the expression of proteins involved in tumor cell survival (Bcl-2, Bcl-xL, c-IAP-1, survivin, and Mcl-1), proliferation (c-Myc and cyclin D1), invasion (MMP-9, ICAM-1), metastasis (CXCR4), and angiogenesis (VEGF). The limonoid was found to be bioavailable in the blood plasma and tumor tissues of treated mice. Conclusions: Our studies provide evidence that nimbolide can suppress the growth of human colorectal cancer through modulation of the proinflammatory microenvironment. Clin Cancer Res; 19(16); 4465–76. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-04
    Description: Purpose: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. Experimental Design: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line–derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. Results: Abemaciclib induced quiescence in ES cell lines via a G 1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. Conclusions: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-18
    Description: Photothermal ablation (PTA) is an emerging technique that uses near-infrared (NIR) laser light–generated heat to destroy tumor cells. However, complete tumor eradication by PTA therapy alone is difficult because heterogeneous heat distribution can lead to sublethal thermal dose in some areas of the tumor. Successful PTA therapy requires selective delivery of photothermal conducting nanoparticles to mediate effective PTA of tumor cells, and the ability to combine PTA with other therapy modalities. Here, we synthesized multifunctional doxorubicin (DOX)-loaded hollow gold nanospheres (DOX@HAuNS) that target EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on the cell membrane of multiple tumors and angiogenic blood vessels. Increased uptake of targeted nanoparticles T-DOX@HAuNS was observed in three EphB4-positive tumors both in vitro and in vivo. In vivo release of DOX from DOX@HAuNS, triggered by NIR laser, was confirmed by dual-radiotracer technique. Treatment with T-DOX@HAuNS followed by NIR laser irradiation resulted in significantly decreased tumor growth when compared with treatments with nontargeted DOX@HAuNS plus laser or HAuNS plus laser. The tumors in 6 of the 8 mice treated with T-DOX@HAuNS plus laser regressed completely with only residual scar tissue by 22 days following injection, and none of the treatment groups experienced a loss in body weight. Together, our findings show that concerted chemo-photothermal therapy with a single nanodevice capable of mediating simultaneous PTA and local drug release may have promise as a new anticancer therapy. Cancer Res; 72(18); 4777–86. ©2012 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-02
    Description: Chronic lymphocytic leukemia (CLL) exhibits high remission rates after initial chemoimmunotherapy, but with relapses with treatment, refractory disease is the most common outcome, especially in CLL with the deletion of chromosome 11q or 17p. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for CLL treatment. Auranofin (Ridaura) is approved for use in treating rheumatoid arthritis, but it exhibited preclinical efficacy in CLL cells. By inhibiting thioredoxin reductase activity and increasing intracellular reactive oxygen species levels, auranofin induced a lethal endoplasmic reticulum stress response in cultured and primary CLL cells. In addition, auranofin displayed synergistic lethality with heme oxygenase-1 and glutamate-cysteine ligase inhibitors against CLL cells. Auranofin overcame apoptosis resistance mediated by protective stromal cells, and it also killed primary CLL cells with deletion of chromosome 11q or 17p. In TCL-1 transgenic mice, an in vivo model of CLL, auranofin treatment markedly reduced tumor cell burden and improved mouse survival. Our results provide a rationale to reposition the approved drug auranofin for clinical evaluation in the therapy of CLL. Cancer Res; 74(9); 2520–32. ©2014 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-16
    Description: Purpose: Progression of prostate cancer to the lethal castrate-resistant stage coincides with loss of responsiveness to androgen deprivation and requires development of novel therapies. We previously provided proof-of-concept that Stat5a/b is a therapeutic target protein for prostate cancer. Here, we show that pharmacologic targeting of Jak2-dependent Stat5a/b signaling by the Jak2 inhibitor AZD1480 blocks castrate-resistant growth of prostate cancer. Experimental Design: Efficacy of AZD1480 in disrupting Jak2–Stat5a/b signaling and decreasing prostate cancer cell viability was evaluated in prostate cancer cells. A unique prostate cancer xenograft mouse model (CWR22Pc), which mimics prostate cancer clinical progression in patients, was used to assess in vivo responsiveness of primary and castrate-resistant prostate cancer (CRPC) to AZD1480. Patient-derived clinical prostate cancers, grown ex vivo in organ explant cultures, were tested for responsiveness to AZD1480. Results: AZD1480 robustly inhibited Stat5a/b phosphorylation, dimerization, nuclear translocation, DNA binding, and transcriptional activity in prostate cancer cells. AZD1480 reduced prostate cancer cell viability sustained by Jak2–Stat5a/b signaling through induction of apoptosis, which was rescued by constitutively active Stat5a/b. In mice, pharmacologic targeting of Stat5a/b by AZD1480 potently blocked growth of primary androgen-dependent as well as recurrent castrate-resistant CWR22Pc xenograft tumors, and prolonged survival of tumor-bearing mice versus vehicle or docetaxel-treated mice. Finally, nine of 12 clinical prostate cancers responded to AZD1480 by extensive apoptotic epithelial cell loss, concurrent with reduced levels of nuclear Stat5a/b. Conclusions: We report the first evidence for efficacy of pharmacologic targeting of Stat5a/b as a strategy to inhibit castrate-resistant growth of prostate cancer, supporting further clinical development of Stat5a/b inhibitors as therapy for advanced prostate cancer. Clin Cancer Res; 19(20); 5658–74. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-18
    Description: Purpose: To report the clinical efficacy of sorafenib and to evaluate biomarkers associated with sorafenib clinical benefit in the BATTLE (Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination) program. Patients and Methods: Patients with previously treated non–small cell lung cancer (NSCLC) received sorafenib until progression or unacceptable toxicity. Eight-week disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were assessed. Prespecified biomarkers included K-RAS , EGFR , and B-RAF mutations, and EGFR gene copy number. Gene expression profiles from NSCLC cell lines and patient tumor biopsies with wild-type EGFR were used to develop a sorafenib sensitivity signature (SSS). Results: A total of 105 patients were eligible and randomized to receive sorafenib. Among 98 patients evaluable for eight-week DCR, the observed DCR was 58.2%. The median PFS and OS were 2.83 [95% confidence interval (CI), 2.04–3.58] and 8.48 months (95% CI, 5.78–10.97), respectively. Eight-week DCR was higher in patients with wild-type EGFR than patients with EGFR mutation ( P = 0.012), and in patients with EGFR gene copy number gain (FISH-positive) versus patients FISH-negative ( P = 0.048). In wild-type EGFR tumors, the SSS was associated with improved PFS (median PFS 3.61 months in high SSS vs. 1.84 months in low SSS; P = 0.026) but not with eight-week DCR. Increased expression of fibroblast growth factor-1, NF-B, and hypoxia pathways were identified potential drivers of sorafenib resistance. Conclusion: Sorafenib demonstrates clinical activity in NSCLC, especially with wild-type EGFR . SSS was associated with improved PFS. These data identify subgroups that may derive clinical benefit from sorafenib and merit investigation in future trials. Clin Cancer Res; 19(24); 6967–75. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-16
    Description: Purpose: Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide. Experimental Design: In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and H2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI)-MS imaging. Results: GBM22 (IC 50 = 68 nmol/L) was significantly more sensitive to MK-1775 compared with five other GBM xenograft lines, including GBM6 (IC 50 〉300 nmol/L), and this was associated with a significant difference in pan-nuclear H2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with temozolomide in vitro . In an orthotopic GBM22 model, MK-1775 was ineffective when combined with temozolomide, whereas in a flank model of GBM22, MK-1775 exhibited both single-agent and combinatorial activity with temozolomide. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared with heterotopic GBM22 tumors. Conclusions: Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. Clin Cancer Res; 21(8); 1916–24. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-16
    Description: Purpose: Effective sensitizing strategies potentially can extend the benefit of temozolomide (TMZ) therapy in patients with glioblastoma (GBM). We previously demonstrated that robust TMZ-sensitizing effects of the [poly (ADP-ribose) polymerase] (PARP) inhibitor veliparib (ABT-888) are restricted to TMZ-sensitive GBM xenografts. The focus of this study is to provide an understanding for the differential sensitization in paired TMZ-sensitive and -resistant GBM models. Experimental Design: The impact of veliparib on TMZ-induced cytotoxicity and DNA damage was evaluated in vitro and in vivo in models of acquired TMZ resistance (GBM12TMZ-mgmt High , GBM12TMZ-mgmt Low , and U251TMZ), inherent TMZ resistance (T98G), and TMZ-sensitive (U251 and GBM12). In vivo drug efficacy, pharmacokinetics, and pharmacodynamics were analyzed using clinically relevant dosing regimens. Results: Veliparib enhanced TMZ cytotoxicity and DNA-damage signaling in all GBM models in vitro with more pronounced effects in TMZ-resistant lines at 3 to 10 μmol/L veliparib. In vivo , combined TMZ/veliparib, compared with TMZ alone, significantly delayed tumor growth and enhanced DNA-damage signaling and H2AX levels in the sensitive GBM12 xenograft line but not in the resistant GBM12TMZ lines. The pharmacokinetic profile of veliparib was similar for GBM12 and GBM12TMZ tumors with C max (~1.5 μmol/L) in tissue significantly lower than concentrations associated with optimal in vitro sensitizing effects for resistant tumors. In contrast, robust suppression of PARP-1 expression by shRNA significantly increased TMZ sensitivity of U251TMZ in vitro and in vivo . Conclusions: In vitro cytotoxicity assays do not adequately model the therapeutic index of PARP inhibitors, as concentrations of veliparib and TMZ required to sensitize TMZ-resistant cancer cells in vivo cannot be achieved using a tolerable dosing regimen. Clin Cancer Res; 20(14); 3730–41. ©2014 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-02
    Description: Purpose: The PI3K/Akt/mTOR signaling pathway is aberrantly activated in many cancers. Combining ridaforolimus, an mTOR inhibitor, with MK-2206, an Akt inhibitor, may more completely block the PI3K pathway and inhibit tumor growth. Experimental Design: This phase I study assessed dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) for the combination of oral ridaforolimus plus oral MK-2206 in patients with advanced solid tumors. Efficacy was evaluated in patients with biomarker-identified estrogen receptor–positive breast cancer (low RAS gene signature and high Ki67 index) or castration-resistant prostate cancer ( PTEN deficiency) with PI3K pathway addiction. Results: Thirty-five patients were enrolled: 11 patients in part A (three breast cancer) and 24 biomarker-eligible patients in part B (16 breast cancer, eight prostate cancer). One patient with breast cancer from part A was also found to be biomarker-eligible when tested after she had clinical response. The MTD was 10 mg/d ridaforolimus 5 d/wk + 90 mg/wk MK-2206; 1 of 17 patients experienced DLT (grade 3 rash) at this dose. The most common adverse events at MTD were rash (44.4%), stomatitis (38.9%), diarrhea (27.8%), and decreased appetite (27.8%). By investigator assessment, 2 of 16 (12.5%) evaluable patients with breast cancer had partial response; by central assessment, 2 of 14 (14.3%) evaluable patients had complete response. Two patients had durable stable disease (SD) for 416 and 285 days, respectively. No patients with prostate cancer responded; one patient had SD for ≥6 months. Conclusions: Combination ridaforolimus and MK-2206 showed promising activity and good tolerability in heavily pretreated patients with hormone-positive and -negative breast cancer exhibiting PI3K pathway dependence. Clin Cancer Res; 21(23); 5235–44. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...