GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association for Cancer Research (AACR)  (2)
  • The American Society for Biochemistry and Molecular Biology (ASBMB)  (2)
  • 1
    Publication Date: 2017-07-15
    Description: The beneficial versus detrimental roles of estrogen plus progesterone (E+P) in breast cancer remains controversial. Here we report a beneficial mechanism of E+P treatment in breast cancer cells driven by transcriptional upregulation of the NFκB modulator NEMO, which in turn promotes expression of the tumor suppressor protein promyelocytic leukemia (PML). E+P treatment of patient-derived epithelial cells derived from ductal carcinoma in situ (DCIS) increased secretion of the proinflammatory cytokine IL6. Mechanistic investigations indicated that IL6 upregulation occurred as a result of transcriptional upregulation of NEMO, the gene that harbored estrogen receptor (ER) binding sites within its promoter. Accordingly, E+P treatment of breast cancer cells increased ER binding to the NEMO promoter, thereby increasing NEMO expression, NFκB activation, and IL6 secretion. In two mouse xenograft models of DCIS, we found that RNAi-mediated silencing of NEMO increased tumor invasion and progression. This seemingly paradoxical result was linked to NEMO-mediated regulation of NFκB and IL6 secretion, increased phosphorylation of STAT3 on Ser727, and increased expression of PML, a STAT3 transcriptional target. In identifying NEMO as a pivotal transcriptional target of E+P signaling in breast cancer cells, our work offers a mechanistic explanation for the paradoxical antitumorigenic roles of E+P in breast cancer by showing how it upregulates the tumor suppressor protein PML. Cancer Res; 77(14); 3802–13. ©2017 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-29
    Description: Activation of hepatic stellate cells (HSCs) is a critical step in the development of liver fibrosis. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerols (TAGs), cholesteryl esters, and retinyl esters (REs). We previously provided evidence for the presence of two distinct LD pools, a preexisting and a dynamic LD pool. Here we investigate the mechanisms of neutral lipid metabolism in the preexisting LD pool. To investigate the involvement of lysosomal degradation of neutral lipids, we studied the effect of lalistat, a specific lysosomal acid lipase (LAL/Lipa) inhibitor on LD degradation in HSCs during activation in vitro. The LAL inhibitor increased the levels of TAG, cholesteryl ester, and RE in both rat and mouse HSCs. Lalistat was less potent in inhibiting the degradation of newly synthesized TAG species as compared with a more general lipase inhibitor orlistat. Lalistat also induced the presence of RE-containing LDs in an acidic compartment. However, targeted deletion of the Lipa gene in mice decreased the liver levels of RE, most likely as the result of a gradual disappearance of HSCs in livers of Lipa−/− mice. Lalistat partially inhibited the induction of activation marker α-smooth muscle actin (α-SMA) in rat and mouse HSCs. Our data suggest that LAL/Lipa is involved in the degradation of a specific preexisting pool of LDs and that inhibition of this pathway attenuates HSC activation.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: Genome-wide association studies have identified more than 90 susceptibility loci for breast cancer. However, the missing heritability is evident, and the contributions of coding variants to breast cancer susceptibility have not yet been systematically evaluated. Here, we present a large-scale whole-exome association study for breast cancer consisting of 24,162 individuals (10,055 cases and 14,107 controls). In addition to replicating known susceptibility loci (e.g., ESR1, FGFR2, and TOX3), we identify two novel missense variants in C21orf58 (rs13047478, Pmeta = 4.52 × 10−8) and ZNF526 (rs3810151, Pmeta = 7.60 × 10−9) and one new noncoding variant at 7q21.11 (P 〈 5 × 10−8). C21orf58 and ZNF526 possessed functional roles in the control of breast cancer cell growth, and the two coding variants were found to be the eQTL for several nearby genes. rs13047478 was significantly (P 〈 5.00 × 10−8) associated with the expression of genes MCM3AP and YBEY in breast mammary tissues. rs3810151 was found to be significantly associated with the expression of genes PAFAH1B3 (P = 8.39 × 10−8) and CNFN (P = 3.77 × 10−4) in human blood samples. C21orf58 and ZNF526, together with these eQTL genes, were differentially expressed in breast tumors versus normal breast. Our study reveals additional loci and novel genes for genetic predisposition to breast cancer and highlights a polygenic basis of disease development.Significance: Large-scale genetic screening identifies novel missense variants and a noncoding variant as predisposing factors for breast cancer. Cancer Res; 78(11); 3087–97. ©2018 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-25
    Description: Tumors depend on their microenvironment for sustained growth, invasion, and metastasis. In this environment, endothelial cells (ECs) are an important stromal cell type interacting with malignant cells to facilitate tumor angiogenesis and cancer cell extravasation. Of note, lysosomal acid lipase (LAL) deficiency facilitates melanoma growth and metastasis. ECs from LAL-deficient (lal−/−) mice possess enhanced proliferation, migration, and permeability of inflammatory cells by activating the mammalian target of rapamycin (mTOR) pathway. Here we report that lal−/− ECs facilitated in vivo tumor angiogenesis, growth, and metastasis, largely by stimulating tumor cell proliferation, migration, adhesion, and transendothelial migration via increased expression of IL-6 and monocyte chemoattractant protein 1 (MCP-1). This prompted us to look for lysosomal proteins that are involved in lal−/− EC dysfunctions. We found that lal−/− ECs displayed increased expression of Rab7, a late endosome/lysosome-associated small GTPase. Moreover, Rab7 and mTOR were co-increased and co-localized to lysosomes and physically interacted in lal−/− ECs. Rab7 inhibition reversed lal−/− EC dysfunctions, including decreasing their enhanced migration and permeability of tumor-stimulatory myeloid cells, and suppressed EC-mediated stimulation of in vitro tumor cell transmigration, proliferation, and migration and in vivo tumor growth and metastasis. Finally, Rab7 inhibition reduced overproduction of reactive oxygen species and increased IL-6 and MCP-1 secretion in lal−/− ECs. Our results indicate that metabolic reprogramming resulting from LAL deficiency enhances the ability of ECs to stimulate tumor cell proliferation and metastasis through stimulation of lysosome-anchored Rab7 activity.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...