GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Rheuban, J. E., McCorkle, D. C., Burdige, D. J., & Zimmerman, R. C. Closing the oxygen mass balance in shallow coastal ecosystems. Limnology and Oceanography, 64(6), (2019): 2694-2708, doi: 10.1002/lno.11248.
    Description: The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere–water and benthic–water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere–water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often‐assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere–water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere–water gradient. When summed, the measured benthic, atmosphere–water, and water column rates predicted, with 85–90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance.
    Description: This work was substantially improved by comments from two anonymous reviewers. We thank Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Bermuda Institute of Ocean Sciences and the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1657727 (to M.H.L. and D.C.M.), 1635403 (to R.C.Z. and D.J.B.), and 1633951 (to M.H.L.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gassett, P. R., O’Brien-Clayton, K., Bastidas, C., Rheuban, J. E., Hunt, C., Turner, E., Liebman, M., Silva, E., Pimenta, A., Grear, J., Motyka, J., McCorkle, D., Stancioff, E., Brady, D., & Strong, A. Community science for coastal acidification monitoring and research. Coastal Management, 49(5), (2021): 510-531, https://doi.org/10.1080/08920753.2021.1947131.
    Description: Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.
    Description: AGU Centennial Grant NOAA OAP OFFICE North American Association for Environmental Education Curtis and Edith Munson Foundation Sea Grant programs within the region Senator George J. Mitchell Center for Sustainability Solutions Funding acknowledgment: MIT Sea Grant award NA18OAR4170105 to Bastidas NERACOOS The WestWind foundation (to Rheuban) Woods Hole Sea Grant (NOAA Grant No. NA18OAR4170104)
    Keywords: Ocean acidification ; Community science ; Citizen science ; Total alkalinity ; Water monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...