GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (11)
  • 1
    In: Climatic Change, Springer Science and Business Media LLC, Vol. 166, No. 1-2 ( 2021-05)
    Abstract: The last few years have seen an explosion of interest in extreme event attribution, the science of estimating the influence of human activities or other factors on the probability and other characteristics of an observed extreme weather or climate event. This is driven by public interest, but also has practical applications in decision-making after the event and for raising awareness of current and future climate change impacts. The World Weather Attribution (WWA) collaboration has over the last 5 years developed a methodology to answer these questions in a scientifically rigorous way in the immediate wake of the event when the information is most in demand. This methodology has been developed in the practice of investigating the role of climate change in two dozen extreme events world-wide. In this paper, we highlight the lessons learned through this experience. The methodology itself is documented in a more extensive companion paper. It covers all steps in the attribution process: the event choice and definition, collecting and assessing observations and estimating probability and trends from these, climate model evaluation, estimating modelled hazard trends and their significance, synthesis of the attribution of the hazard, assessment of trends in vulnerability and exposure, and communication. Here, we discuss how each of these steps entails choices that may affect the results, the common problems that can occur and how robust conclusions can (or cannot) be derived from the analysis. Some of these developments also apply to other attribution methodologies and indeed to other problems in climate science.
    Type of Medium: Online Resource
    ISSN: 0165-0009 , 1573-1480
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 751086-X
    detail.hit.zdb_id: 1477652-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Climate Dynamics Vol. 59, No. 9-10 ( 2022-11), p. 2871-2886
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 59, No. 9-10 ( 2022-11), p. 2871-2886
    Abstract: Regional climate projections indicate that European summer precipitation may change considerably in the future. Southern Europe can expect substantial drying while Northern Europe could actually become wetter. Model spread and internal variability in these projections are large, however, and unravelling the processes that underlie the changes is essential to get more confidence in these projections. Large-scale circulation change is one of the contributors to model spread. In this paper we quantify the role of future large-scale circulation changes to summer precipitation change, using a 16-member single-model ensemble obtained with the regional climate model RACMO2, forced by the global climate model EC-Earth2.3 and the RCP8.5 emission scenario. Using the method of circulation analogues three contributions to the future precipitation change are distinguished. The first is the precipitation change occurring without circulation change (referred to as the thermodynamic term). This contribution is characterised by a marked drying-to-wetting gradient as one moves north from the Mediterranean. The second contribution measures the effects of changes in the mean circulation. It has a very different spatial pattern and is closely related to the development of a region of high pressure (attaining its maximum west of Ireland) and the associated anti-cyclonic circulation response. For a large area east of Ireland including parts of western Europe, it is the major contributor to the overall drying signal, locally explaining more than 90% of the ensemble-mean change. In regions where the patterns overlap, the signal-to-noise ratio of the total change is either enhanced or reduced depending on their relative signs. Although the second term is expected to be particularly model dependent, the high-pressure region west of Ireland also appears in CMIP5 and CMIP6 ensemble-mean projections. The third contribution records the effects of changes in the circulation variability. This term has the smallest net contribution, but a relatively large uncertainty. The analogues are very good in partitioning the ensemble-mean precipitation change, but describe only up to 40% of the ensemble-spread. This demonstrates that other precipitation-drivers (SST, spring soil moisture etc.) will generally strongly influence trends in single climate realisations. This also re-emphasises the need for large ensembles or using alternative methods like the Pseudo Global Warming approach where signal to noise ratios are higher. Nevertheless, identifying the change mechanisms helps to understand the future uncertainties and differences between models.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Climate Dynamics Vol. 60, No. 9-10 ( 2023-05), p. 2563-2579
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 60, No. 9-10 ( 2023-05), p. 2563-2579
    Abstract: The issue of the added value (AV) of high resolution regional climate models is complex and still strongly debated. Here, we approach AV in a perfect model framework within a 16-member single model initial condition ensemble with the regional climate model RACMO2 embedded in the global climate model EC-Earth2.3. In addition, we also used an ensemble produced by a pseudo global warming (PGW) approach. Results for winter temperature and precipitation are investigated from two different perspectives: (1) a signal-to-noise perspective analysing the systematic response to changing emission forcings versus internal climate variability, and (2) a prediction perspective aimed at predicting a 30-year future climate state. Systematic changes in winter temperature and precipitation contain fine-scale response patterns, but in particular for precipitation these patterns are small compared to internal variability. Therefore, single members of the ensemble provide only limited information on these systematic patterns. However, they can be estimated more reliably from PGW members because of the stronger constraints on internal variability. From the prediction perspective, we analysed AV of fine-scale information by comparing three prediction pairs. This analysis shows that there is AV in the fine-scale information for temperature, yet for precipitation adding fine-scale changes generally deteriorates the predictions. Using only the large-scale change (without fine scales) from a single ensemble member as a delta change on top of the present-day climate state, already provides a robust estimate of the future climate state and therefore can be used as a simple benchmark to measure added value.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Climatic Change Vol. 140, No. 3-4 ( 2017-2), p. 649-658
    In: Climatic Change, Springer Science and Business Media LLC, Vol. 140, No. 3-4 ( 2017-2), p. 649-658
    Type of Medium: Online Resource
    ISSN: 0165-0009 , 1573-1480
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 751086-X
    detail.hit.zdb_id: 1477652-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 53, No. 9-10 ( 2019-11), p. 5999-6033
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Reviews Earth & Environment, Springer Science and Business Media LLC, Vol. 1, No. 10 ( 2020-08-18), p. 530-543
    Type of Medium: Online Resource
    ISSN: 2662-138X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 3005281-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Communications Earth & Environment Vol. 2, No. 1 ( 2021-01-04)
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-01-04)
    Abstract: The frequency of climate extremes will change in response to shifts in both mean climate and climate variability. These individual contributions, and thus the fundamental mechanisms behind changes in climate extremes, remain largely unknown. Here we apply the probability ratio concept in large-ensemble climate simulations to attribute changes in extreme events to either changes in mean climate or climate variability. We show that increased occurrence of monthly high-temperature events is governed by a warming mean climate. In contrast, future changes in monthly heavy-precipitation events depend to a considerable degree on trends in climate variability. Spatial variations are substantial however, highlighting the relevance of regional processes. The contributions of mean and variability to the probability ratio are largely independent of event threshold, magnitude of warming and climate model. Hence projections of temperature extremes are more robust than those of precipitation extremes, since the mean climate is better understood than climate variability.
    Type of Medium: Online Resource
    ISSN: 2662-4435
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3037243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Climate Change Vol. 9, No. 9 ( 2019-09), p. 697-704
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 9, No. 9 ( 2019-09), p. 697-704
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Climate Dynamics Vol. 60, No. 5-6 ( 2023-03), p. 1781-1800
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 60, No. 5-6 ( 2023-03), p. 1781-1800
    Abstract: Three consecutive dry summers in western Europe (2018–2019–2020) had widespread negative impacts on society and ecosystems, and started societal debate on (changing) drought vulnerability and adaptation measures. We investigate the occurrence of multi-year droughts in the Rhine basin, with a focus on event probability in the present and in future warmer climates. Additionally, we investigate the temporally compounding physical drivers of multi-year drought events. A combination of multiple reanalysis datasets and multi-model large ensemble climate model simulations was used to provide a robust analysis of the statistics and physical processes of these rare events. We identify two types of multi-year drought events (consecutive meteorological summer droughts and long-duration hydrological droughts), and show that these occur on average about twice in a 30 year period in the present climate, though natural variability is large (zero to five events can occur in a single 30 year period). Projected decreases in summer precipitation and increases in atmospheric evaporative demand, lead to a doubling of event probability at 1  $$^\circ$$ ∘ C additional global warming relative to present-day and an increase in the average length of events. Consecutive meteorological summer droughts are forced by two, seemingly independent, summers of lower than normal precipitation and higher than normal evaporative demand. The soil moisture response to this temporally compound meteorological forcing has a clear multi-year imprint, resulting in a relatively larger reduction of soil moisture content in the second year of drought, and potentially more severe drought impacts. Long-duration hydrological droughts start with a severe summer drought followed by lingering meteorologically dry conditions. This limits and slows down the hydrological recovery of soil moisture content, leading to long-lasting drought conditions. This initial exploration provides avenues for further investigation of multi-year drought hazard and vulnerability in the region, which is advised given the projected trends and vulnerability of society and ecosystems.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Climate Dynamics Vol. 46, No. 5-6 ( 2016-3), p. 1683-1698
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 46, No. 5-6 ( 2016-3), p. 1683-1698
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...